CAMBRIDGE INTERNATIONAL EXAMINATIONS
Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2015 series

9702 PHYSICS
9702/42 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.

© IGCSE is the registered trademark of Cambridge International Examinations.
Section A

1 (a) (i) gravitational force provides/is the centripetal force \(B_1 \)

\[\frac{GMm_S}{x^2} = \frac{m_S v^2}{x} \] \(\text{allow } x \text{ or } r, \text{ allow } m \text{ or } m_S \) \(M_1 \)

\[E_K = \frac{1}{2} m_S v^2 \] and clear algebra leading to \(E_K = \frac{GMm_S}{2x} \) \(A_1 \) [3]

(ii) \(E_P = - \frac{GMm_S}{x} \) (sign essential) \(B_1 \) [1]

(iii) \(E_T = E_K + E_P \)

\[= \frac{GMm_S}{2x} - \frac{GMm_S}{x} \]

\[= - \frac{GMm_S}{2x} \] (allow ECF from (a)(ii)) \(C_1 \) \(A_1 \) [2]

(b) (i) decreases \(B_1 \) [1]

(ii) decreases \(B_1 \) [1]

(iii) decreases \(B_1 \) [1]

(iv) increases \(B_1 \) [1]

(for answers in (b) allow ECF from (a)(iii))

2 (a) obeys the equation \(pV = nRT \) or \(pV/T = \text{constant} \) \(M_1 \)

all symbols explained; \(T \) in kelvin/thermodynamic temperature \(A_1 \) [2]

(b) (i) temperature rise = 48 K \(A_1 \) [1]

(ii) \[<c^2> \propto T \text{ or equivalent} \]

\[<c^2> = \frac{353}{305} \times 1.9 \times 10^6 \]

\[c_{r.m.s.} = 1480 \text{ m/s} \] \(C_1 \) \(C_1 \) \(A_1 \) [3]

3 (a) heat/thermal energy gained by system or energy transferred to system by heating plus work done on the system or minus work done by the system \(B_1 \)

B1 [2]

(b) (i) either volume decreases so work done on the system or small volume change so work done on system negligible (thermal) energy absorbed to break lattice structure internal energy increases \(M_1 \) \(M_1 \) \(A_1 \) [3]

(ii) gas expands so work done by gas (against atmosphere) no time for thermal energy to enter or leave the gas internal energy decreases \(M_1 \) \(M_1 \) \(A_1 \) [3]

4 (a) free: (body oscillates) without any loss of energy/no resistive forces/no external forces applied \(B_1 \)

forced: continuous energy input (required)/body is made to vibrate by an (external) periodic force/driving oscillator \(B_1 \) [2]
(b) (i) idea of resonance
maximum amplitude at natural frequency
frequency = 2.1 Hz (allow 2.08 to 2.12 Hz) B1 [3]

(ii) peak not very sharp/amplitude not infinite so frictional forces are present B1 [1]

(c) \[v = \omega x_0 \]
\[= 2\pi \times 2.1 \times 4.7 \times 10^{-2} \text{ (allow ECF from (b)(i))} \] C1
\[= 0.62 \text{ m s}^{-1} \] A1 [2]

5 (a) (i) force proportional to the product of the two/point charges
and inversely proportional to the square of their separation B1 [2]

(ii) 1. force radially away from sphere/to right/to east B1 [1]
2. (maximum) at/on surface of sphere or \(x = r \) B1 [1]
3. \(F \propto \frac{1}{x^2} \) or \(F = \frac{q_1q_2}{(4\pi\varepsilon_0x^2)} \) C1
 ratio = 16 A1 [2]

(b) \(E = \frac{q}{(4\pi\varepsilon_0x^2)} \) or \(E \propto q \) C1
maximum charge = \((2.0/1.5) \times 6.0 \times 10^{-7} \) C1
\[= 8.0 \times 10^{-7} \text{ C} \]
additional charge = \(2.0 \times 10^{-7} \text{ C} \) A1 [3]

6 (a) (i) force = \(mg \)
along the direction of the field/of the motion M1 A1 [2]

(ii) no force B1 [1]

(b) (i) force due to \(E \)-field downwards so force due to \(B \)-field upwards to right into the plane of the paper B1 [2]

(ii) force due to magnetic field = \(Bqv \) B1
force due to electric field = \(Eq \) B1
(use of \(F_B \) and \(F_E \) not explained, allow 1/2) B1 [3]

forces are equal (and opposite) so \(Bv = E \) or \(Eq = Bqv \) so \(E = Bv \) B1 [3]

(c) sketch: smooth curved path M1
in 'upward' direction A1 [2]

7 (a) minimum frequency of e.m. radiation/a photon (not "light") for emission of electrons from a surface M1 A1 [2]
(reference to light/UV rather than e.m. radiation, allow 1/2)
(b) E_{MAX} corresponds to electron emitted from surface electron (below surface) requires energy to bring it to surface, so less than E_{MAX}

(b) E_{MAX} corresponds to electron emitted from surface electron (below surface) requires energy to bring it to surface, so less than E_{MAX}

(c) (i) $1/\lambda_0 = 1.85 \times 10^6$ (allow 1.82 to 1.88)

$$f_0 = c / \lambda_0$$
$$= 3.00 \times 10^8 \times 1.85 \times 10^6$$
$$= 5.55 \times 10^{14} \text{Hz}$$

(c) (i) $1/\lambda_0 = 1.85 \times 10^6$ (allow 1.82 to 1.88)

$$f_0 = c / \lambda_0$$
$$= 3.00 \times 10^8 \times 1.85 \times 10^6$$
$$= 5.55 \times 10^{14} \text{Hz}$$

(ii) $\Phi = hf_0$

$$= 6.63 \times 10^{-34} \times 5.55 \times 10^{14} \text{ (allow ECF from (c)(i))}$$

$= 3.68 \times 10^{-19} \text{J}$

(ii) $\Phi = hf_0$

$$= 6.63 \times 10^{-34} \times 5.55 \times 10^{14} \text{ (allow ECF from (c)(i))}$$

$= 3.68 \times 10^{-19} \text{J}$

(d) sketch: straight line with same gradient intercept between 1.0 and 1.5

(d) sketch: straight line with same gradient intercept between 1.0 and 1.5

8 (a) nucleus: small central part/core of an atom nucleon: proton or a neutron particle contained within a nucleus

8 (a) nucleus: small central part/core of an atom nucleon: proton or a neutron particle contained within a nucleus

(b) (i) 1. decay constant $= \ln 2 / (3.8 \times 24 \times 3600)$

$= 2.1 \times 10^{-6} \text{s}^{-1}$

(b) (i) 1. decay constant $= \ln 2 / (3.8 \times 24 \times 3600)$

$= 2.1 \times 10^{-6} \text{s}^{-1}$

2. $A = \lambda N$

$= 2.1 \times 10^{-6} \times N$

2. $A = \lambda N$

$= 2.1 \times 10^{-6} \times N$

$N = 4.6 \times 10^7$

$N = 4.6 \times 10^7$

A1 [2]

(ii) 1.0m^3 contains $(6.02 \times 10^{23}) / (2.5 \times 10^{-2})$ air molecules

(ii) 1.0m^3 contains $(6.02 \times 10^{23}) / (2.5 \times 10^{-2})$ air molecules

ratio $= (4.6 \times 10^7 \times 2.5 \times 10^{-2}) / (6.02 \times 10^{23})$

$= 1.9 \times 10^{-18}$

ratio $= (4.6 \times 10^7 \times 2.5 \times 10^{-2}) / (6.02 \times 10^{23})$

$= 1.9 \times 10^{-18}$

A1 [2]
Section B

9 (a) (i) (+) 3.0 V

(ii) potential = 6.0 \times \{2.0 / (2.0 + 2.8)\}
 = 2.5 V

(iii) potential = 6.0 \times \{2.0 / (2.0 + 1.8)\}
 = 3.2 V

(b) at 10 °C, \(V_A > V_B\)

\(V_{\text{OUT}}\) is \(-9.0\) V \text{ (allow “negative saturation”)\)

at 20 °C, \(V_{\text{OUT}}\) is \(+9.0\) V
\text{ (if 20 °C considered initially, mark as M1,A1,B1)\)

sudden switch (from \(-9\) V to \(+9\) V) when \(V_A = V_B\)

10 (a) sharpness: clarity of edges/resolution (of image)
contrast: difference in degree of blackening (of structures)

(b) (i) X-rays produced when (high speed) electrons hit target/anode
\text{ either electrons have been accelerated through 80 kV\)
or electrons have (kinetic) energy of 80 keV

(ii) \(I_T/I = e^{-3.0 \times 1.4}\)
 = 0.015

(c) for good contrast, \(\mu x\) or \(e^{i\mu x}\) or \(e^{-i\mu x}\) must be very different
\(\mu x\) or \(e^{i\mu x}\) or \(e^{-i\mu x}\) for bone and muscle will be different than that for muscle
so good contrast

11 (a) frequency of carrier wave varies
in synchrony with the displacement of the signal/information wave

(b) (i) 5.0 V

(ii) 720 kHz

(iii) 780 kHz

(iv) 7500
12 (a) (i) (gradual) loss of power/intensity/amplitude (not “signal”) B1 [1]

(ii) e.g. noise can be eliminated (not “there is no noise”) M1
 because pulses can be regenerated A1
 e.g. much greater data handling/carrying capacity M1
 because many messages can be carried at the same time/greater
 bandwidth A1

 e.g. more secure
 because it can be encrypted (M1)
 e.g. error checking
 because extra information/parity bit can be added (M1) [4]

 (allow any two sensible suggestions with ‘state’ M1 and ‘explain’ A1)

(b) attenuation = 10 \lg (145/29) (= 7.0) C1
 attenuation per unit length = 7.0/36
 = 0.19 dB km\(^{-1}\) A1 [2]