This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.
1 (b) (i) Value of a with consistent unit and in the range 0 to 50.0 cm.

(v) Value of V with unit to nearest 0.001 V and in range 0 to 2 V.

(c) Six sets of readings of a, b and V scores 5 marks, five sets scores 4 marks etc.

Range:
\[a_{\text{max}} - a_{\text{min}} \geq 30.0 \text{ cm}. \]

Column headings:
Each column heading must contain a quantity and a unit. The presentation of quantity and unit must conform to accepted scientific convention. e.g. a/m or a(m), $1/V$/V^{-1}.

Consistency:
All values of a and b must be given to the nearest mm.

Significant figures:
Every value of $1/V$ must be given to the same number of significant figures as (or one more than) the number of significant figures in the corresponding value of V.

Calculation:
Values of $1/V$ calculated correctly to the number of significant figures given by the candidate.

(d) (i) Axes:
Sensible scales must be used. Awkward scales (e.g. 3:10) are not allowed.
Scales must be chosen so that the plotted points occupy at least half the graph grid in both x and y directions.
Scales must be labelled with the quantity that is being plotted.
Scale markings should be no more than three large squares apart.

Plotting:
All observations in the table must be plotted on the grid.
Diameter of plotted points must be \leq half a small square (no “blobs”).
Points must be plotted to an accuracy of half a small square.

Quality:
All points in the table must be plotted (at least 5) for this mark to be awarded.
Scatter of points must be no more than \pm 0.050 m (5.0 cm) to scale in the b direction from a straight line.

(ii) Line of best fit:
Judge by balance of all points on the grid about the candidate’s line (at least 5 points). There must be an even distribution of points either side of the line along the full length.
Allow one anomalous point only if clearly indicated (i.e. circled or labelled) by the candidate.
Lines must not be kinked or thicker than half a square.
(iii) Gradient:
The hypotenuse of the triangle must be greater than half the length of the
drawn line. Do not allow $\Delta x/\Delta y$. Sign of gradient must match graph drawn.
Both read-offs must be accurate to half a small square in both the x and y
directions.

y-intercept:
Either:
Correct read-off from a point on the line substituted into $y = mx + c$ or an
equivalent expression.
Read-offs must be accurate to half a small square in both x and y directions.
Or:
Intercept read directly from the graph, with read-off accurate to half a small
square.

(e) Value of $P =$ candidate’s gradient and value of $Q =$ candidate’s intercept.

Unit for P is correct (e.g. m$^{-1}$V$^{-1}$) and unit for Q is correct (e.g. V$^{-1}$).

2 (b) (iv) All values of x with unit to nearest mm. Average $x \leq 20.0$ cm.

(c) (i) Value of θ to the nearest degree in the range 25° to 35°.

(ii) Absolute uncertainty in θ in range 2° to 5° and correct method of calculation
to obtain percentage uncertainty. If repeated readings have been taken, then
the absolute uncertainty can be half the range (but not zero) if working is
clearly shown.

(iii) Correct calculation of $\cos^2(\theta/2)$. No unit.

(iv) Justification for significant figures in $\cos^2(\theta/2)$ linked to significant figures in θ.

(d) (ii) T in range 0.5 s to 2.5 s, with unit.

Evidence of repeat readings of T.

(f) Second value of θ.

Second values of T_1 and T_2.

Second value of $T_1/T_2 < $ first value of T_1/T_2 when rounded to 2 s.f.

(g) (i) Two values of k calculated correctly.

(ii) Valid comment consistent with the calculated values of k, testing against a
criterion specified by the candidate.
<table>
<thead>
<tr>
<th>(h) Limitations (4 max.)</th>
<th>(ii) Improvements (4 max.)</th>
<th>Do not credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Not enough readings to draw a conclusion</td>
<td>Take more readings and plot a graph/obtain more k values and compare</td>
<td>Few readings/only one reading/not enough readings for an accurate result/“repeat readings” on its own/take more readings and (calculate) average k</td>
</tr>
<tr>
<td>B Difficult to measure θ or read protractor with reason e.g. rod is above protractor/rod obscures view</td>
<td>Improved method of measuring θ e.g. shadow projection with light above/thinner rod/rod with smaller diameter/plumb-lines hung from rod/larger protractor/360° protractor</td>
<td>Just “difficult to measure θ”/smaller rod/“protractor reads to 1°”</td>
</tr>
<tr>
<td>C Oscillations or T affected by... e.g. air movement force on release different forces angle of release unwanted modes of oscillation</td>
<td>Improved method of release e.g. card gate or switch off air conditioning/close windows/closed room</td>
<td>Release by electromagnet/cutting string/damping/air resistance/friction</td>
</tr>
<tr>
<td>D Large percentage uncertainty in time/period T is short</td>
<td>Valid method to improve timing e.g. use video with timer/frame by frame/motion sensor and position at side of cradle or Increase T by... e.g. heavier nail/longer nail/string</td>
<td>Oscillations too fast/high/low speed camera/video on its own/human reaction time/just “difficult to determine time”/fiducial marker</td>
</tr>
<tr>
<td>E Valid problem linked to magnetism e.g. nail weakly magnetised/metal stand attracts nail/interference by Earth’s magnetic field.</td>
<td>Valid method to overcome problem linked with magnetism e.g. stroke nail more times/use of coil</td>
<td>Nail loses magnetism</td>
</tr>
<tr>
<td>F</td>
<td>Method of fixing paper/protractor/magnets e.g. tape/Blu-tack/draw protractor on paper</td>
<td>Just “stick paper” without method</td>
</tr>
</tbody>
</table>