CAMBRIDGE INTERNATIONAL EXAMINATIONS
Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2015 series

9702 PHYSICS

9702/23 Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.

© IGCSE is the registered trademark of Cambridge International Examinations.
1 (a) energy or W: $\text{kg m}^2 \text{s}^{-2}$
 or
 power or P: $\text{kg m}^2 \text{s}^{-3}$ \hspace{1cm} M1

 intensity or I: $\text{kg m}^2 \text{s}^{-2} \text{m}^2 \text{s}^{-1}$ (from use of energy expression)
 or
 $\text{kg m}^2 \text{s}^{-3} \text{m}^{-2}$ (from use of power expression)

 indication of simplification to kg s^{-3} \hspace{1cm} A1 \ [2]

(b) (i) ρ: kg m^{-3}, c: m s^{-1}, f: s^{-1}, x_0: m \hspace{1cm} M1

 substitution of terms in an appropriate equation and simplification to show K
 has no units \hspace{1cm} A1 \ [2]

(ii) $I = 20 \times 1.2 \times 330 \times (260)^2 \times (0.24 \times 10^{-9})^2$

 $= 3.1 \times 10^{-11} \text{ (W m}^{-2})$ \hspace{1cm} C1

 $= 31 (30.8) \text{ pW m}^{-2}$ \hspace{1cm} A1 \ [3]

2 (a) (i) (the loudspeakers) are connected to the same signal generator \hspace{1cm} B1 \ [1]

 (ii) 1. the waves (that overlap) have phase difference of zero or path difference

 of zero and so

 \hspace{1cm} \hspace{1cm} \hspace{1cm} either constructive interference

 \hspace{1cm} \hspace{1cm} \hspace{1cm} or displacement larger \hspace{1cm} B1 \ [1]

 2. the waves (that overlap) have phase difference of $(n + \frac{1}{2}) \times 360^\circ$ or

 $(n + \frac{1}{2}) \times 2\pi \text{ rad}$ or path difference of $(n + \frac{1}{2})\lambda$ and so

 \hspace{1cm} \hspace{1cm} \hspace{1cm} either destructive interference

 \hspace{1cm} \hspace{1cm} \hspace{1cm} or displacements cancel/smaller \hspace{1cm} B1 \ [1]

 3. the waves (that overlap) are in phase or have phase difference of $n360^\circ$

 or $2\pi n \text{ rad}$ or path difference of $n\lambda$ and so

 \hspace{1cm} \hspace{1cm} \hspace{1cm} either constructive interference

 \hspace{1cm} \hspace{1cm} \hspace{1cm} or displacement larger \hspace{1cm} B1 \ [1]

(b) time period = 0.002 s or 2 ms \hspace{1cm} C1

 wave drawn is half time period \hspace{1cm} B1

 amplitude 1.0 cm (same as Fig. 2.2) \hspace{1cm} B1 \ [3]
3 (a) (i) 1. \(s = ut + \frac{1}{2}at^2 \)

\[
192 = \frac{1}{2} \times 9.81 \times t^2
\]

\(t = 6.3 \) (6.26) s

2. \(\text{max } E_k (= mg h) = 0.27 \times 9.81 \times 192 \)

or

\(\text{max } E_k = 510 \) (509) J

(ii) velocity is proportional to time or velocity increases at a constant rate

as acceleration is constant or resultant force is constant

(iii) use of \(v = at \) or \(v^2 = 2as \) or \(E = \frac{1}{2}mv^2 \) to give \(v = 61.4 \) m s\(^{-1} \)

(b) (i) \(R \) increases with velocity

resultant force is \(mg - R \) or resultant force decreases

acceleration decreases

(ii) at \(v = 40 \) m s\(^{-1} \), \(R = 0.6 \) (N)

\[
0.27 \times 9.8 - 0.6 = 0.27 \times a
\]

\(a = 7.6 \) (7.58) m s\(^{-2} \)

(iii) \(R = \text{weight for terminal velocity} \)

\(\text{either weight requires velocity to be about } 80 \text{ m s}^{-1} \)

\(\text{or at } 60 \text{ m s}^{-1}, R \) is less than weight

so does not reach terminal velocity

4 (a) (i) reaction/vertical force = \(\text{weight} - P \cos 60^\circ \)

\[
= 180 - 35 \cos 60^\circ
\]

\(= 160 \) (163) N

(ii) work done = \(35 \sin 60^\circ \times 20 \)

\(= 610 \) (606) J
(b) (i) work done by force \(P = \) work done against frictional force \(B1 \) [1]

(ii) horizontal component of \(P \) is equal and opposite to frictional force \(B1 \)

vertical component of \(P \) + normal reaction force equal and opposite to weight \(B1 \) [2]

5 (a) (i) resistance = \(V/I \) \(B1 \)

very high/infinite resistance at low voltages \(B1 \)

resistance decreases as \(V \) increases \(B1 \) [3]

(ii) p.d. from graph 0.50 (V) \(C1 \)

resistance = \(0.5/(4.4 \times 10^{-3}) \)

= 110 (114) \(\Omega \) \(A1 \) [2]

(b) (i) current (= \(1.2/375 \)) = \(3.2 \times 10^{-3} \) A \(A1 \) [1]

(ii) current in diode = \(4.4 \times 10^{-3} \) (A)

total resistance = \(1.2/4.4 \times 10^{-3} \) = 272.7 (\(\Omega \)) \(C1 \)

resistance of \(R_1 \) = 272.7 – 113.6 = 160 (159)\(\Omega \) \(A1 \)

or

p.d. across diode = 0.5 V and p.d. across \(R_1 \) = 0.7 V \(\text{(C1)} \)

resistance of \(R_1 \) = \(0.7/4.4 \times 10^{-3} \)

= 160 (159)\(\Omega \) \(\text{(A1)} \) [2]

(iii) power = \(IV \) or \(I^2R \) or \(V^2/R \) \(C1 \)

ratio = \((4.4 \times 0.5)/(3.2 \times 1.2) \)

or \([(4.4)^2 \times 114]/[(3.2)^2 \times 375] \)

or \([(0.5)^2 \times 375]/[114 \times (1.2)^2] \)

= 0.57 \(\text{A1} \) [2]

6 (a) waves from loudspeaker (travel down tube and) are reflected at closed end \(B1 \)

two waves (travelling) in opposite directions with same frequency/wavelength overlap \(B1 \) [2]

(b) (i) 0.51 m

0.85 m \(A1 \) [2]

(ii) A at open end, N at closed end, with an N and A in between, equally spaced (by eye) \(B1 \) [1]
7 (a) stress or $\sigma = F/A$

max. tension = $\UTS \times A = 4.5 \times 10^8 \times 15 \times 10^{-6} = 6800 \ (6750) \text{N}$

(b) $\rho = m/V$

weight = $mg = \rho V g = \rho ALg$

$6750 = 7.8 \times 10^3 \times 15 \times 10^{-6} \times L \times 9.81$

$L = 5.9 \ (5.88) \times 10^3 \text{m}$

or

maximum mass = $6750/9.81 = 688 \text{kg}$

mass per unit length = $\rho A = 0.117 \text{kg} \text{m}^{-1}$

$L = 688/0.117 = 5.9 \times 10^3 \text{m}$

or

maximum mass = $6750/9.81 = 688 \text{kg}$

volume = $m/\rho = 0.0882 \text{m}^3 = LA$

$L = 0.0882/15 \times 10^{-6} = 5.9 \times 10^3 \text{m}$

8 (a) mass-energy
proton number or charge
nucleon number

(b) (i) $E_k = \frac{1}{2} mv^2$ and $p = mv$ with working leading to

$[\text{via } E_k = \frac{1}{2} m \frac{p^2}{m} \text{ or } \frac{1}{2} m (p/m)^2]$

to $E_k = \frac{p^2}{2m}$

(ii) $p = (2E_k m)^{\frac{1}{2}}$ hence $(2[E_k m]_{Th})^{\frac{1}{2}} = (2[E_k m]_{Th})^{\frac{1}{2}}$

$2 \times [E_k]_{Th} \times 234 = 2 \times 6.69 \times 10^{-13} \times 4$

$[E_k]_{Th} = 1.14 \times 10^{-14} \text{J}$

$= 71(0.5) \text{ keV}$

or

calculation of speed of α-particle = $1.42 \times 10^7 \text{ m s}^{-1}$
calculation of momentum of α-particle/nucleus = $9.43 \times 10^{-20} \text{ Ns}$

$[E_k]_{Th} = 1.14 \times 10^{-14} \text{J}$

$= 71(0.5) \text{ keV}$