This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.
1. (a) kelvin / K B1
 ampere / amp / A B1 [2]
 [allow mole / mol and candela / Cd]

 (b) (i) energy OR work = force × distance [allow any energy expression] C1
 units: kg m s⁻² × m OR kg (m s⁻¹)² for ½ mv² or mc² M1
 (ignore any numerical factor)
 = kg m² s⁻² A0 [2]

 (ii) units: ρ: kg m⁻³ g: m s⁻² A: m² l₀: m C1
 C: kg m² s⁻² / kg² m⁻⁵ m² s⁻⁴ m² m³ [any subject] C1
 = kg⁻¹ m s⁻² (allow m s² / kg) A1 [3]

2. (a) \(d = v \times t \) C1
 \(t = 0.2 \times 4 \) (allow \(t = 0.2 \times 2 \)) C1
 \(d = 3 \times 10^8 \times 0.8 \times 10^{-6} \) OR \(3 \times 10^8 \times 0.4 \times 10^{-6} \) C1
 \(d = 240 \text{ m} \) hence distance from source to reflector = 120 m A1 [4]

 (b) speed of sound 300 cf speed of light 3 \times 10^8 \quad \text{OR time} = 240 / 300 (= 0.8) C1
 \text{OR time} = 120 / 300 (= 0.4) C1
 sound slower by factor of 10⁶ OR time for one division 0.8 / 4 C1
 OR time for one division 0.4 / 2 C1
 time base setting 0.2 s cm⁻¹ [unit required] A1 [3]

3. (a) (work =) force × distance moved / displacement in the direction of the force B1 [1]
 OR when a force moves in the direction of the force work is done

 (b) kinetic energy = \(\frac{1}{2} \) mv² C1
 \(= \frac{1}{2} \times 0.4 (2.5)^2 = 1.25 / 1.3 \text{ J} \) A1 [2]

 (c) (i) area under graph is work done / work done = \(\frac{1}{2} Fx \) C1
 \(1.25 = (14 \times x) / 2 \) C1
 \(x = 0.18 (0.179) \text{ m} \) [allow \(x = 0.19 \text{ m} \) using kinetic energy = 1.3 J] A1 [3]

 (ii) smooth curve from \(v = 2.5 \) at \(x = 0 \) to \(v = 0 \) at Q M1
 curve with increasing gradient A1 [2]
4 (a) torque of a couple = one of the forces / a force × distance
multiplied by the perpendicular distance between the forces

(b) (i) weight at P (vertically) down
normal reaction OR contact force at (point of contact with the pin) P
(vertically) up

(ii) torque = 35 × 0.25 (or 25) × 2
= 18 (17.5) N m

(iii) the two 35N forces are equal and opposite and the weight and the upward / contact / reaction force are equal and opposite

(iv) not in equilibrium as the (resultant) torque is not zero

5 (a) (i) displacement is the distance the rope / particles are (above or below) from the equilibrium / mean / rest / undisturbed position (not ‘distance moved’)

(ii) 1. amplitude (= 80 / 4) = 20 mm
2. \(v = f \lambda \) or \(v = \lambda / T \)
 \(f = 1 / T = 1 / 0.2 \) (5 Hz)
 \(v = 5 \times 1.5 = 7.5 \text{ m s}^{-1} \)

(b) point A of rope shown at equilibrium position
same wavelength, shape, peaks / wave moved \(\frac{1}{4}\lambda \) to right

(c) (i) progressive as energy OR peaks OR troughs is/are transferred/moved /propagated (by the waves)

(ii) transverse as particles/rope movement is perpendicular to direction of travel /propagation of the energy/wave velocity

6 (a) p.d. = work (done) / charge OR energy transferred from (electrical to other forms) / (unit) charge

(b) (i) \(R = \rho l / A \)
\(\rho = 18 \times 10^{-9} \)
\(R = (18 \times 10^{-9} \times 75) / 2.5 \times 10^{-6} = 0.54 \Omega \)

(ii) \(V = IR \)
\(R = 38 + (2 \times 0.54) \)
\(I = 240 / 39.08 = 6.1 \) (6.14) A
(iii) \(P = I^2R \) or \(P = VI \text{ and } V = IR \) or \(P = \sqrt{2} \cdot I \cdot R \) and \(V = IR \)
\(= (6.14)^2 \times 2 \times 0.54 \)
\(= 41 \text{ (40.7) W} \)

(c) area of wire is less \((1/5)\) hence resistance greater \((\times 5)\)
OR \(R \) is \(\propto 1/A \) therefore \(R \) is greater
p.d. across wires greater so power loss in cables increases

7 (a) (i) the direction of the fields is the same OR fields are uniform OR constant electric field strength OR \(E = V/d \) with symbols explained
(ii) reduce p.d. across plates
increase separation of plates
(iii) \(\alpha \) opposite charge to \(\beta \) (as deflection in opposite direction)
\(\beta \) has a range of velocities OR energies (as different deflections) and
\(\alpha \) all have same velocity OR energy (as constant deflection)
\(\alpha \) are more massive (as deflection is less for greater field strength)

(b) \(W = 234 \) and \(X = 90 \)
\(Y = 4 \) and \(Z = 2 \)

(c) \(A = 32 \) and \(B = 16 \) and \(C = 0 \) and \(D = -1 \)