MARK SCHEME for the October/November 2011 question paper
for the guidance of teachers

9702 PHYSICS

9702/51 Paper 5 (Planning, Analysis and Evaluation),
maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of
the examination. It shows the basis on which Examiners were instructed to award marks. It does not
indicate the details of the discussions that took place at an Examiners’ meeting before marking began,
which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most
IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level
syllabuses.
1 Planning (15 marks)

Defining the problem (3 marks)
P *P* is the independent variable, *B* is the dependent variable or vary *r* and measure *B*. [1]
P Keep the number of turns on the coil(s) **constant**. Do not accept same coil. [1]
P Keep the current in the coil **constant**. [1]

Methods of data collection (5 marks)
M1 Diagram showing coil and labelled Hall probe positioned in the centre of a coil. Solenoids will not be credited. [1]
M2 Circuit diagram for coil connected to a (d.c.) power supply. [1]
M3 Connect Hall probe to voltmeter/c.r.o.
 Allow galvanometer but do not allow ammeter. [1]
M4 Measure diameter or radius with a ruler/vernier callipers. [1]
M5 Method to locate centre of coil.
 e.g. determine max *V*_H; cross rules; projection [1]

Method of analysis (2 marks)
A Plot a graph of *B* against 1/*r* [allowlg *B* against lg *r* or other valid graph] [1]
A Relationship is valid if the graph is a straight line passing through the origin
 [if lg-lg then straight line with gradient = –1 (ignore reference to y-intercept)] [1]

Safety considerations (1 mark)
S Precaution linked to (large) heating of coil, e.g. switch off when not in use to avoid overheating coil; do not touch coil because it is hot. [1]

Additional detail (4 marks)
D Relevant points might include [4]
1 Use large current/large number of turns to create a large magnetic field.
2 Use of rheostat to keep current constant in coil.
3 Monitor constant current with ammeter to check current is constant.
4 Hall probe at right angles to direction of magnetic field/plane of coil.
5 **Reasoned method** to keep Hall probe in constant orientation (e.g. use of set square, fix to rule, optical bench or equivalent).
6 *B* is proportional to voltage across Hall probe/calibrate Hall probe in a known magnetic field.
7 Repeat experiment with Hall probe reversed and average.
8 Repeat measurement for *r* or *d* and average.

Do not allow vague computer methods.

[Total: 15]
Analysis, conclusions and evaluation (15 marks)

<table>
<thead>
<tr>
<th>Part</th>
<th>Mark</th>
<th>Expected Answer</th>
<th>Additional Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>A1</td>
<td>1.5 or 3/2</td>
<td>Ignore (y)-intercept (incorrect (y)-intercept will be penalised in (d)(i)).</td>
</tr>
<tr>
<td>(b)</td>
<td>T1</td>
<td>8.111 or 8.1106</td>
<td>Allow a mixture of decimal places. T1 must be table values.</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>8.258 or 8.2577</td>
<td>T2 must be a minimum of 2 d.p. Ignore rounding errors.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.625 or 8.6253</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.827 or 8.8267</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.029 or 9.0294</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.274 or 9.2742</td>
<td></td>
</tr>
<tr>
<td></td>
<td>U1</td>
<td>From ± 0.07 or ± 0.08, to ± 0.005</td>
<td>Allow more than one significant figure.</td>
</tr>
<tr>
<td>(c)</td>
<td>(i)</td>
<td>G1</td>
<td>Six points plotted correctly</td>
</tr>
<tr>
<td></td>
<td>U2</td>
<td>Error bars in (\lg T) plotted correctly</td>
<td>All error bars to be plotted. Must be accurate to less than half a small square.</td>
</tr>
<tr>
<td>(c)</td>
<td>(ii)</td>
<td>G2</td>
<td>Line of best fit</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>Worst acceptable straight line. Steepest or shallowest possible line that passes through all the error bars.</td>
<td>Line should be clearly labelled or dashed. Examiner judgement on worst acceptable line. Lines must cross. Mark scored only if error bars are plotted.</td>
</tr>
<tr>
<td>(c)</td>
<td>(iii)</td>
<td>C1</td>
<td>Gradient of best fit line</td>
</tr>
<tr>
<td></td>
<td>U3</td>
<td>Uncertainty in gradient</td>
<td>Method of determining absolute uncertainty Difference in worst gradient and gradient.</td>
</tr>
<tr>
<td>(c)</td>
<td>(iv)</td>
<td>C2</td>
<td>Negative (y)-intercept</td>
</tr>
<tr>
<td></td>
<td>U4</td>
<td>Uncertainty in (y)-intercept</td>
<td>Uses worst gradient and point on WAL. Do not check calculation. FOX does not score.</td>
</tr>
<tr>
<td>(d)</td>
<td>(i)</td>
<td>C3</td>
<td>Method to determine (k)</td>
</tr>
<tr>
<td></td>
<td>U5</td>
<td>Uncertainty in (k)</td>
<td>Best (k) – worst (k) using (y)-intercept. Allow ecf for method from (c)(iv).</td>
</tr>
<tr>
<td>(d)</td>
<td>(ii)</td>
<td>C4</td>
<td>(M) between (2.36 \times 10^{26}) and (2.36 \times 10^{28}) given to 2 or 3 s.f.</td>
</tr>
</tbody>
</table>

[Total: 15]
Uncertainties in Question 2

(c) (iii) Gradient [E3]
Uncertainty = gradient of line of best fit – gradient of worst acceptable line
Uncertainty = \(\frac{1}{2} \) (steepest worst line gradient – shallowest worst line gradient)

(iv) \[E4\]
Uncertainty = \(y \)-intercept of line of best fit – \(y \)-intercept of worst acceptable line
Uncertainty = \(\frac{1}{2} \) (steepest worst line gradient – shallowest worst line gradient)

(d) (i) \[E5\]
Uncertainty = best \(k \) – worst \(k \)