This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.
1 (a) (i) either 1.55% or 1.6% …(not 1.5 or 2) .. A1 [1]

(ii) either 1.09% or 1.1% …(not 1.0 or 1) .. A1 [1]

(b) answer of {(ii) + 2 × (i)} to any number of sig. fig.
 either 4.2% or 4.3% .. A1 [1]

(c) (i) either the value has more significant figures than the data
 or uncertainty of ±0.4 renders more than 2 s.f. meaningless) B1 [1]

(ii) uncertainty in \(g = \pm 0.41 / \pm 0.42 \) to any number of s.f. C1
 \(g = (9.8 \pm 0.4) \text{ m s}^{-2} \) ... A1 [2]

[Total: 6]

2 (a) (i) e.g. (phase) change from liquid to gas / vapour
 thermal energy required to maintain constant temperature B1 [1]
 (do not allow ‘convert water to steam’)

(ii) e.g. evaporation takes place at surface .. B1
 boiling takes place in body of the liquid ... B1
 e.g. evaporation occurs at all temperatures ... B1
 boiling occurs at one temperature ... B1 [4]

(b) (i) volume = \(\frac{48}{4.5} = 10.7 \text{ cm}^3 \) .. A1 [1]

(ii) 1 volume = \(10.7 / (6.0 \times 10^{23}) \)
 = \(1.8 \times 10^{23} \text{ cm}^3 \) ... A1 [1]
 2 separation = \(\sqrt[3]{1.8 \times 10^{23}} \)
 = \(2.6 \times 10^{8} \text{ cm} \) .. A1 [1]

[Total: 8]

3 (a) (i) speed = 4.0 m s\(^{-1}\) …(allow 1 s.f.) ... A1 [1]

(ii) \(v^2 = 2gh \)
 = \(2 \times 9.8 \times 1.96 \) .. M1
 \(v = 6.2 \text{ m s}^{-1} \) ... A0 [1]
 (use of \(g = 10 \text{ m s}^{-2} \) loses the mark)

(b) correct basic shape with correct directions for vectors M1
 speed = \((7.4 \pm 0.2) \text{ m s}^{-1} \) .. A1
 at (33 ± 2)° to the vertical ... A1 [3]
 (for credit to be awarded, speed and angle must be correct on the diagram – not calculated)
(c) (i) either $v^2 = 2 \times 9.8 \times 0.98$ or $v = 6.2 / \sqrt{2}$... C1
speed $= 4.4 \text{ m s}^{-1}$.. A1 [2]
(allow calculation of $t = 0.447 \text{ s}$, then $v = 4.4 \text{ m s}^{-1}$)

(ii) 1 momentum $= mv$... C1
change in momentum $= 0.034 \times (6.2 + 4.4)$... C1
$= 0.36 \text{ kg m s}^{-1}$.. A1 [3]
(use of $0.034 \times (6.2 - 4.4)$ loses last two marks)

2 force $= \Delta p / \Delta t$(however expressed) ... C1
$= \frac{0.36}{0.12}$
$= 3.0 \text{ N}$(allow 1 s.f.) .. A1 [2]

[TOTAL: 12]

4 (a) ability to do work .. B1
as a result of a change of shape of an object/stretch etc .. B1 [2]

(b) work $= \text{average force } \times \text{distance moved (in direction of the force)}$ B1
either work $= \frac{1}{2} \times F \times x$
or work is area under F/x graph which is $\frac{1}{2}Fx$... B1
$F = kx$.. B1
so work / energy $= \frac{1}{2}kx^2$.. A0 [3]

(c) (i) spring constant $= \frac{3.8}{2.1}$... M1
$= 1.8 \text{ N cm}^{-1}$.. A0 [1]

(ii) 1 $\Delta E_p = mg\Delta h$ or $W\Delta h$.. C1
$= 3.8 \times 1.5 \times 10^{-2}$
$= 0.057 \text{ J}$.. A1 [2]

2 $\Delta E_s = \frac{1}{2} \times 1.8 \times 10^2 (0.036^2 - 0.021^2)$... M1
$= 0.077 \text{ J}$.. A0 [1]

3 work done $= 0.077 - 0.057$
$= 0.020 \text{ J}$.. A1 [1]
(allow e.c.f. if $\Delta E_s > \Delta E_p$)

[TOTAL: 10]
5 (a) (i) frequency f ... B1 [1]
(ii) amplitude A ... B1 [1]

(b) π rad or 180°(unit necessary) .. B1 [1]

(c) (i) speed $= f \times L$... B1 [1]
(ii) wave is reflected at end / at P .. B1
 either incident and reflected waves interfere
 or two waves travelling in opposite directions interfere M1
 speed is the speed of incident or reflected wave / one of these waves A1 [3]

[Total: 7]

6 (a) total resistance in series $= 2R$
 total resistance in parallel $= \frac{1}{2}R$.. M1
 ratio is $2R / \frac{1}{2}R = 4$(allow mark if clear numbers in the ratio) A0 [1]

(b) at 1.5 V, current is 0.10 A .. C1
 resistance $= \frac{V}{I} = \frac{1.5}{0.1} = 15 \Omega$.. A1 [2]
 (use of tangent or any other current scores no marks)

(c)	p.d. across each lamp / V	resistance of each lamp / Ω	combined resistance / Ω
series | 1.5 | 15 | 30
parallel | 3.0 | 20 | 10

column 1 .. A1
columns 2 and 3: max 3 marks with -1 mark for each error or omission A3 [4]

(d) (i) ratio is 3(allow e.c.f.) .. A1 [1]
(ii) resistance increases as potential difference increases B1
 increasing p.d. increases current ... B1
 current increases non-linearly so resistance increases B1 [3]

[Total: 11]
7 (a) either forms of same element
or atoms / nuclei with same number of protons .. M1
atoms / nuclei contain different numbers of neutrons A1 [2]
(use of ‘element’ rather than atoms / nuclei scores max 1 mark)

(b) (i) decay is not affected by environmental factors B1 [1]
(allow two named factors)
(ii) either time of decay (of a nucleus) cannot be predicted
or nucleus has constant probability in a given time B1 [1]

(c) ^{185}Re .. B1
either ^0e or $^0\beta$... B1 [2]

[Total: 6]