MARK SCHEME for the October/November 2007 question paper

9702 PHYSICS
9702/04 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.
Section A

1 (a) (i) angle subtended at centre of circle ... B1
arc equal in length to the radius ... B1 [2]

(ii) arc = \(r\theta \) and for one revolution, arc = \(2\pi r \) M1
so, \(\theta = \frac{2\pi r}{r} = 2\pi \) ... A0 [1]

(b) (i) either weight provides/equals the centripetal force
or acceleration of free fall is centripetal acceleration B1
9.8 = 0.13 \(\times \omega^2 \) .. M1
\(\omega = 8.7 \text{ rad s}^{-1} \) ... A0 [2]

(ii) force in cord = weight + centripetal force (can be an equation) C1
force in cord = \((L - 13) \times \frac{5}{1.8} \) or force constant = \(\frac{5.0}{1.8} \) C1
\(L = \frac{17.2 \text{ cm}}{16.6 \text{ cm}} \) allow 2/4

2 (a) (i) \(pV = nRT \)
\(V = \frac{8.31 \times 300}{1.02 \times 10^5} \) ... C1
= 0.0244 m\(^3\) (if uses Celsius, then 0/2) .. A1 [2]

(ii) volume occupied by one atom = \(\frac{0.0244}{6.02 \times 10^{23}} = 4.06 \times 10^{-26} \text{ m}^3 \) M1
separation \(\approx 3\sqrt{(4.06 \times 10^{-26})} \) .. A1
= \(3.44 \times 10^{-9} \text{ m} \) ... A0 [2]

(b) (i) \(F = \frac{GMm}{r^2} \) ... C1
\(= \frac{6.67 \times 10^{-11} \times (4 \times 1.66 \times 10^{-27})^2}{(3.44 \times 10^{-9})^2} \) C1
\(= 2.49 \times 10^{-46} \text{ N} \) .. A1 [3]

(ii) ratio = \(\frac{4 \times 1.66 \times 10^{-27} \times 9.8}{2.49 \times 10^{-46}} \) .. C1
\(= 2.6 \times 10^{20} \) ... A1 [2]

(c) assumption that forces between atoms are negligible B1
comment e.g. ratio shows gravitational force to be very small
 e.g. force is very much less than weight
 e.g. if there are forces, they are not gravitational B1 [2]
3 (a) (i) 0.8 cm ... B1 [1]

(ii) (max.) kinetic energy = 2.56 mJ .. C1

\[v_{(\text{MAX})} = \omega a \] ... C1

(max.) kinetic energy = \(\frac{1}{2} m \omega^2 a^2 \) or \(\frac{1}{2} m \omega^2 (a^2 - x^2) \) .. C1

\[2.56 \times 10^{-3} = \frac{1}{2} \times 0.130 \times \omega^2 \times (0.8 \times 10^{-2})^2 \] .. M1

\[\omega = 24.8 \text{ rad s}^{-1} \] .. C1

\[f = \frac{\omega}{2\pi} \] .. M1

\[= 4.0 \text{ Hz} \ (3.95 \text{ Hz}) \] .. A0 [6]

(b) (i) line parallel to x-axis at 2.56 mJ ... B1 [1]

(ii) 1 4.0 Hz .. B1

2 0.50 cm (allow ±0.03 cm) .. B1 [2]

4 (a) (i) either lines directed away from sphere

or lines go from positive to negative

or line shows direction of force on positive charge .. M1

so positively charged ... A1 [2]

(ii) either all lines (appear to) radiate from centre

or all lines are normal to surface of sphere .. B1 [1]

(b) tangent to curve .. B1

in correct position and direction ... B1 [2]

(c) (i) \[V = \frac{(0.76 \times 10^{-9})}{(4\pi \times 8.85 \times 10^{-12} \times 0.024)} \] ... C1

\[= 285 \text{ V} \] .. A1 [2]

(ii) negative charge is induced on (inside of) box ... M1

formula applies to isolated (point) charge

OR less work done moving test charge from infinity .. A1

so potential is lower .. A1 [3]

(d) either gravitational field is always attractive

or field lines must be directed towards both box and sphere B1 [1]
5 (a) e.g. separate charges, store energy, smoothing circuit. etc.B1 [1]
 (allow 'stores charge')

 (b) (i) charge = current \times \text{time} ..B1 [1]

 (ii) area is 21.2 cm\(^2\) (allow ±0.5 cm\(^2\)) ...C2
 (allow 1 mark if outside ±0.5 cm\(^2\) but within ±1.0 cm\(^2\))
 1.0 cm\(^2\) represents (0.125 \times 10^{-3} \times 1.25 =) 156 \, \mu\text{C}C1
 charge = 3300 \, \mu\text{C} ..A1 [4]

 (iii) capacitance = \frac{Q}{V} ...C1
 = (3300 \times 10^{-6}) / 15
 = 220 \, \mu\text{F} ...A1 [2]

 (c) either energy = \frac{1}{2}C\text{V}^2 or energy = \frac{1}{2}Q\text{V} and C = \frac{Q}{V}C1
 \frac{1}{2} \times C \times 15^2 = 2 \times \frac{1}{2} \times C \times \text{V}^2 ..C1
 V = 10.6 \, \text{V} ..A1 [3]

6 (a) (i) \text{B}I \sin \theta ...B1 [1]

 (ii) (downwards) into (the plane of) the paper ...B1 [1]

 (b) (i) magnetic field (due to current) in one loop OR each loop acts as a coilB1
 cuts/is normal to current in second loop OR produces magnetic fieldB1
 causing force on second loop OR fields in same directionM1
 either Newton's 3rd discussed or vice versa clear gives rise to attraction OR so attractsA1 [4]

 (ii) B = 2 \times 10^{-7} \text{/}0.75 \times 10^{-2} (= 2.67 \times 10^{-5} \text{I})C1
 force = 0.26 \times 10^{-3} \times 9.81 (= 2.55 \times 10^{-3} \text{N})C1
 F = BIL
 2.55 \times 10^{-3} = 2.67 \times 10^{-5} \times I^2 \times 2\pi \times 4.7 \times 10^{-2}C1
 I = 18 \, \text{A} ...A1 [4]
<table>
<thead>
<tr>
<th>Mark Scheme</th>
<th>Syllabus</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCE A/AS LEVEL – October/November 2007</td>
<td>9702</td>
<td>04</td>
</tr>
</tbody>
</table>

7 (a) energy required to (completely) separate the nucleons (in a nucleus)B1 [1]

(b) (i) U labelled near right-hand end of line ...B1
 Ba and Kr in approximately correct positions ...B1 [2]

(ii) binding energy is \(A \times E_B \) ...B1
 either binding energy of U < binding energy of (Ba + Kr)
 or \(E_B \) of U < \(E_B \) of (Ba + Kr) ...B1 [2]

(c) Krypton-92 reduced to 1/8 in 9 s ...M1
 in 9 s, very little decay of Barium-141 ...M1
 so, approximately 9 s ...A1 [3]

OR

\(\lambda_{Kr} = 0.231 \) or \(\lambda_{Ba} = 6.42 \times 10^{-4} \) \(\) \(\) (M1)

\(8 = e^{-\lambda_{Ba} \times t} \) \(e^{-\lambda_{Kr} \times t} \) \(\) (C1)

\(t = 9.0 \) s \(\) (A1)
Section B

8 (a) (i) - 9 V

(ii) + 9 V (both (i) and (ii) correct for the mark) ..B1 [1]

(b) × × ..B1

✓ × ..B1

✓ ✓ ..B1 [3]

(no e.c.f. from (a))

(c) (i) cct: thermistor and resistor in series ...M1

output connections across thermistor ...A1 [2]

(ii) as temperature decreases, thermistor resistance increasesB1

p.d. across thermistor = \(R_T / (R + R_T) \times V \) ..M1

as \(R_T \) increases, output increases ..A1 [3]

9 (a) product of density (of medium) and speed of sound (in medium)B1 [1]

(b) difference in acoustic impedance ...M1

determines fraction of incident intensity ..A1 [2]

that is reflected/amount of reflection ..A1 [2]

(c) pulse of ultrasound (directed into body) ..B1

reflected at boundary (between tissues) ..B1

(reflected pulse is) detected and processed ...B1

time for return of echo gives (information on) depth ...B1

amount of reflection gives information on tissue structuresB1 [5]

10 (a) (i) amplitude (modulated) (allow ‘AM’) ...B1 [1]

(ii) carrier (frequency / wave) ...B1 [1]

(iii) sideband (frequency) ..B1 [1]

(b) 10 kHz ..B1 [1]

(c) sketch: general shape i.e. any wave that is amplitude modulatedM1

correct period for modulating waveform (200 \(\mu \text{s} \)) ..A1

correct period for carrier waveform (20 \(\mu \text{s} \)) ...A1 [3]
11 (a) carrier frequencies can be re-used (simultaneously without interference)B1 so that number of handsets possible is increased ...B1 OR anything sensible e.g. UHF used (B1) so 'line of sight' (B1) [2]

(b) handset sends out an (identifying) signal ...M1 communicated by base stations to (computer at) exchangeA1 computer selects base station with strongest signal ...B1 and allocates a (carrier) frequency ...B1 [4]