This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. This shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.
Grade thresholds taken for Syllabus 9702 (Physics) in the November 2004 examination.

<table>
<thead>
<tr>
<th>Component 2</th>
<th>maximum mark available</th>
<th>minimum mark required for grade:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>41</td>
</tr>
</tbody>
</table>

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.
<table>
<thead>
<tr>
<th>MARK SCHEME</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMUM MARK: 60</td>
</tr>
<tr>
<td>SYLLABUS/COMPONENT: 9702/02</td>
</tr>
<tr>
<td>PHYSICS</td>
</tr>
<tr>
<td>Paper 2 (Structured)</td>
</tr>
</tbody>
</table>
1 (a) (i) e.g. check for zero error (on micrometer)/zero the micrometer B1
(ii) take readings along the length of the wire/at different points B1
(iii) take readings spirally/around the wire B1 [3]
(b) (i) 4% A1
(ii) 8% A1 [2]

2 (a) all same speed in a vacuum (allow medium)/all travel in a vacuum (1)
transverse/can be polarised (1)
undergo diffraction/interference/superposition (1)
can be reflected/refracted (1)
show properties of particles (1)
oscillating electric and magnetic fields (1)
transfer energy/progressive (1)
not affected by electric and magnetic fields (1)

(allow any three, 1 each) B3 [3]
(b) 495 nm = 495 x 10^{-9} m C1
number = 1/(495 x 10^{-9}) = 2.02 x 10^6 A1 [2]
(allow 2 or more significant figures)

(c) (i) allow 10^7 → 10^{11} m B1
(ii) allow 10^{-3} → 10^{-6} m B1 [2]

3 (a) constant gradient/straight line B1 [1]
(b) (i) 1.2 s A1
(ii) 4.4 s A1 [2]
(c) either use of area under line or \(h = \text{average speed} \times \text{time} \) C1
\[
 h = \frac{1}{2} \times (4.4 - 1.2) \times 32 \\
= 51.2 \text{ m} \quad \text{A1 [3]}
\]
(allow 2/3 marks for determination of \(h = 44 \text{ m} \) or \(h = 58.4 \text{ m} \)
allow 1/3 marks for answer 7.2 m)
(d) \(\Delta p = m \Delta v \) OR \(p = mv \)
\[\Delta p = 0.25 \times (28 + 12) \]
\[= 10 \text{ N s} \]
(answer 4 N s scores 2/3 marks)

3 (e) (i) total/sum momentum before = total/sum momentum after
in any closed system

(ii) either the system is the ball and Earth
momentum of Earth changes by same amount
but in the opposite direction
or Ball is not an isolated system/there is a force on the ball (B1)
Gravitational force acts on the ball (B1)
causes change in momentum/law does not apply here (B1)
(if explains in terms of air resistance, allow first mark only)

4 (a) wavelength = 1.50 m

(b) \(v = f \lambda \)
speed = 540 m s\(^{-1}\)

(c) (progressive) wave reflected at the (fixed) ends
wave is formed by superposition of (two travelling) waves
this quantity is the speed of the travelling wave

5 (a) (i) \(F/A \)

(ii) \(\Delta L/L \)

(iii) \(FL/A \cdot \Delta L \)

(b) (i) \(\Delta L = 0.012 \times 0.62 \times 350 \)
\[= 2.6 \text{ mm} \]

(ii) \(2.0 \times 10^{11} = (F \times 0.62)/(7.9 \times 10^{-7} \times 2.6 \times 10^{-3}) \)
\[F = 660 \text{ N} \]
(iii) either stress when cold = \(\frac{660}{(7.9 \times 10^{-7})} \) = 840 MPa

or tension at uts = 198 N

either this is greater than the ultimate tensile stress

or tension at uts is less then tension in (ii)

the wire will snap

(Allow possibility for the two ‘A’ marks to be scored as long as some quantitative answer – even if incorrect – has been given for the ‘M’ mark)

6 (a) (i) resistance is ratio \(\frac{V}{I} \) (at a point)

either gradient increases or \(I \) increases more rapidly than \(V \)

(If states \(R = \text{reciprocal of gradient}, \) then 0/2 marks here)

(ii) current = 2.00 mA

resistance = 2 000 \(\Omega \)

(b) (i) straight line from origin

passing through (6.0 V, 4.0 mA) (allow \(\frac{1}{2} \) square tolerance)

(ii) individual currents are 0.75 mA and 1/33 mA

current in battery = 2.1 mA

(allow argument in terms of \(P = I^2R \) or \(IV \))

(c) same current in R and in C

p.d. across C is larger than that across R

so since power = \(VI \), greater in C

(allow argument in terms of \(P = I^2R \) or \(IV \))

7 (a) (i) nucleus is small

in comparison to size of atom

(ii) nucleus is massive/heavy/dense

and charged (allow to be scored in (i) or (ii))

(b) (i) symmetrical path and deviation correct w.r.t. position of nucleus

deviation less than in path AB

(ii) deviation > 90° and in correct direction