This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.
1 (a) (i) 1% of ±2.05 is ±0.02
 A1 [1]

 (ii) max. value is 2.08 V
 A1 [1]

 (b) there may be a zero error/calibration error/systematic error
 which makes all readings either higher or lower than true value
 M1 A1 [2]

2 (a) no resultant force/sum of forces zero
 B1 [2]

 no resultant moment/torque/sum of moments/torques zero
 B1 [2]

 (b) (i) each force is represented by the side of a triangle/by an arrow
 in magnitude and direction
 A1 B1 [3]

 (could be shown on a sketch diagram)

 (ii) if the triangle is ‘closed’ (then the forces are in equilibrium)
 B1 [1]

(c) triangle drawn with correct shape (incorrect arrows loses this mark)
 B1 [3]

 $T_1 = 5.4 \pm 0.2 \text{ N}$
 B1

 $T_2 = 4.0 \pm 0.2 \text{ N}$
 B1

 (d) forces in strings would be horizontal
 (so) no vertical force to support the weight
 B1 [2]

3 (a) evidence of use of area below the line
 B1 [3]

 distance = 39 m (allow ±0.5 m)
 A2 [3]

 (if > ±0.5 m but ≤ 1.0 m, then allow 1 mark)

 (b) (i) $E_K = \frac{1}{2}mv^2$
 $\Delta E_K = \frac{1}{2} \times 92 \times (6^2 - 3^2)$
 = 1240 J
 A1 [2]

 $E_P = mgh$
 $\Delta E_P = 92 \times 9.8 \times 1.3$
 = 1170 J
 A1 [2]

 (ii) $E = Pt$
 $E = 75 \times 8$
 = 600 J
 A1 [2]

 (c) (i) energy = (1240 + 600) − 1170
 = 670 J
 M1 A0 [1]

 (ii) force = 670/39 = 17 N
 A1 [1]

 (d) frictional forces include air resistance
 air resistance decreases with decrease of speed
 B1 [2]
<table>
<thead>
<tr>
<th></th>
<th>Mark Scheme: Teachers’ version</th>
<th>Syllabus</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCE AS/A LEVEL – May/June 2010</td>
<td>9702</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

Question 4

(a) (i) solid has fixed volume and fixed shape/incompressible
 B1 [1]

(ii) gas fills any space into which it is put
 B1 [1]

(b) atoms/molecules have (elastic) collisions with the walls (of the vessel)
nomentum of atom/molecule changes
so impulse (on wall)/force on wall
random motion/many collisions (per unit time) gives rise to
(constant) force/pressure
 B1 [4]

(c) spacing (much) greater in gases than in liquids/about ten times
 either spacing depends on $\frac{1}{3} \sqrt{\rho}$
 or ratio of spacings is about 8.8
 C1

Question 5

(a) (i) 1 number of oscillations per unit time (not per second)
 B1 [1]

(ii) $n = \frac{\lambda}{t}$
 $n/t = f$ hence $\nu = \frac{\lambda}{t}$
 or f oscillations per unit time so $\frac{\lambda}{t}$ is distance per unit time
 distance per unit time is ν so $\nu = \frac{\lambda}{t}$
 M1 A1 [2]

(b) (i) 1.0 period is $3 \times 2 = 6.0$ ms
 frequency $= \frac{1}{(6 \times 10^{-3})} = 170$ Hz
 C1 A1 [2]

(ii) wave (with approx. same amplitude and) with correct phase difference
 B1 [1]

Question 6

(a) (i) movement/flow of charged particles
 B1 [1]

(ii) work done per unit charge (transferred)
 B1 [1]

(b) straight line through origin
 resistance $= \frac{V}{I}$, with values for V and I shown
 $= 20 \Omega$
 (using the gradient loses the last mark)
 B1 M1 A0 [2]

(c) (i) 0.5A
 A1 [1]

(ii) *either* resistance of each resistor is 20Ω or total current $= 0.8A$
 either combined resistance $= 10 \Omega$ or $R = \frac{E}{I} = 10\Omega$
 C1 A1 [2]

(d) (i) 10V
 A1 [1]

(ii) power $= EI$
 $= 10 \times 0.2 = 2.0W$
 C1 A1 [2]
7 (a) (i) *either* helium nucleus
 or particle containing two protons and two neutrons
 B1 [1]

 (ii) allow any value between 1 cm and 10 cm
 B1 [1]

(b) (i) energy = \(\frac{8.5 \times 10^{-13}}{1.6 \times 10^{-13}} \)
 = 5.3 MeV
 M1
 A0 [1]

 (ii) number = \(\frac{5.3 \times 10^6}{31} \)
 = \(1.7 \times 10^5 \) (allow 2 s.f. only)
 C1
 A1 [2]

 (iii) number per unit length = \(\frac{1.7 \times 10^5}{(a)(ii)} \)
 correct numerical value
 A1
 correct unit
 B1 [2]