READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE ON ANY BARCODES.

Answer all questions. You will be allowed to work with the apparatus for a maximum of one hour for each question. You are expected to record all your observations as soon as these observations are made, and to plan the presentation of the records so that it is not necessary to make a fair copy of them. The working of the answers is to be handed in. Additional answer paper and graph paper should be submitted only if it becomes necessary to do so. You are reminded of the need for good English and clear presentation in your answers.

At the end of the examination, fasten all your work securely together. All questions in this paper carry equal marks.

For Examiner’s Use

1

2

Total
You may not need to use all of the materials provided.

1 In this experiment you will measure the current I through a resistor R_3 as its resistance is changed.

(a) (i) Use the voltmeter to measure the e.m.f. E of the power supply.

$$E = \ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots V$$

(ii) Connect the circuit shown in Fig. 1.1. R_1 and R_2 are labelled, and R_3 may be chosen from any one of the remaining resistors. Each resistor carries a label indicating its resistance.

![Circuit Diagram](image)

Fig. 1.1

(iii) Record the values of the current I and the resistance R_3 of resistor R_3.

$$I = \ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots A$$

$$R_3 = \ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\Omega$$
(b) Change the resistor R_3 and repeat (a)(iii) until you have six sets of readings for I and R_3. Include values of $\frac{1}{I}$ in your table of results.

(c) (i) Plot a graph of $\frac{1}{I}$ (y-axis) against R_3 (x-axis).
(ii) Draw the line of best fit.
(iii) Determine the gradient and the y-intercept of the graph.

gradient = ..
y-intercept = ..
(d) The relationship between \(I \) and \(R_3 \) is

\[
\frac{1}{I} = \left(\frac{R_1 + R_2}{ER_2} \right) R_3 + \frac{R_1}{E}
\]

where \(R_1 \) is the resistance of the resistor \(R_1 \), \(R_2 \) is the resistance of the resistor \(R_2 \), and \(E \) is the e.m.f. of the power supply.

Using your answers from (a)(i) and (c)(iii), determine values of \(R_1 \) and \(R_2 \).

\[R_1 = \ldots \]

\[R_2 = \ldots \]
2 In this experiment you will investigate how the rebound height \(h \) of a table-tennis ball is related to the height \(d \) from which it is dropped.

If air resistance is ignored, then theory predicts that

\[
e = \sqrt[3]{\frac{h}{d}}
\]

where \(e \) is a constant. Air resistance may be ignored if \(d < 40 \text{ cm} \).

(a) (i) Mount a half-metre rule vertically using a stand, boss and clamp.

(ii) Place the table-tennis ball next to the rule and record \(d \). Release the ball and make measurements to determine the rebound height \(h \), as shown in Fig. 2.1.

![Fig. 2.1](image)

\[
d = ...
\]
\[
h = ...
\]

(iii) Explain how you used the apparatus to ensure that the rebound height \(h \) was measured as accurately as possible.

..
..
..
..
..
..
(iv) Estimate the percentage uncertainty in \(h \).

percentage uncertainty in \(h = \) ...

(v) Calculate a value for \(e \).

\[e = \] ..

(b) Repeat (a)(ii) and (b)(v) using a different value of \(d \).

\[d = \] ..
\[h = \] ..
\[e = \] ..

(c) Do the results of your experiment indicate that \(e \) is a constant within the limits of experimental accuracy? Explain your reasoning clearly.

..
..
..
..
..
..
..
..
(d) (i) State four sources of error or limitations of the procedure in this experiment.

1. ..
2. ..
3. ..
4. ..

(ii) Suggest four improvements that could be made to this experiment. You may suggest the use of other apparatus or different procedures.

1. ..
2. ..
3. ..
4. ..