MARK SCHEME for the March 2016 series

9702 PHYSICS

9702/52 Paper 5 (Planning, Analysis and Evaluation),
maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of
the examination. It shows the basis on which Examiners were instructed to award marks. It does not
indicate the details of the discussions that took place at an Examiners’ meeting before marking began,
which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner
Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE®
and Cambridge International A and AS Level components.
1 Planning (15 marks)

Defining the problem (2 marks)

P k is the independent variable and h is the dependent variable, or vary k, measure h. [1]

P Keep mass of object constant. [1]

Methods of data collection (4 marks)

M Labelled diagram (minimum two labels) showing object (mass) attached to cord and other end of cord fixed (e.g. stand and clamp or hook) and rule(r) drawn vertically next to cord. [1]

M Method of measuring mass e.g. balance/scales. [1]

M $k = \text{(weight or force)/extension or } mg/\text{extension}$; allow graphical methods. Allow any subject e.g. $mg = k \times \text{extension}$. [1]

M Use of rule to measure h or maximum distance/length (fallen by the object). Allow clear indication on diagram (i.e. dotted lines) linking distance h to rule. Do not credit length of cord. [1]

Method of analysis (3 marks)

✓ Plot a graph of $\frac{(h-L)^2}{h}$ against $\frac{1}{k}$ [Allow $2/k$ or $2m/k$ or m/k] [1]

✓ $g = \text{gradient}/2m$ [gradient/m or gradient or gradient/2] [1]

✓ Relationship is valid if the graph is a straight line passing through the origin. [1]

Additional detail (6 marks)

D Relevant points [6]

1 Keep starting point constant/drop object from same position/use of electromagnet to drop object/ensure mass is dropped from fixed point/check object falls vertically

2 Rule(r) fixed e.g. retort stand

3 Method to determine extension, e.g. measure length of stretched cord and subtract original length/50.0 cm. [Accept from a diagram]

4 Safety precaution linked to prevention of mass/cord hitting a person – use safety screen/goggles; sand tray to catch falling object if cord breaks

5 Trial experiment to locate approximate point of h to prevent object hitting surface

6 Detailed use of video camera with slow motion or frame by frame playback/motion sensor clearly explained

7 Cord obeys Hooke’s law or must not exceed elastic limit

8 Use set square to ensure ruler is vertical

9 For each cord, repeat experiment determine average h

Do not allow vague computer methods.

[Total: 15 marks]
2 Analysis, conclusions and evaluation (15 marks)

<table>
<thead>
<tr>
<th>Part</th>
<th>Mark</th>
<th>Expected Answer</th>
</tr>
</thead>
</table>
| (a) | A1 | Gradient = \(\frac{c_m \Delta \theta}{P} \)
 \(y \)-intercept = \(\frac{m_w c_m \Delta \theta + k}{P} \) |
| (b) | T1 | Column heading \(m_m/g \)
 100
 200
 300
 400
 500
 600 |
| | U1 | From ± 10 to ± 60 |
| (c)(i)| G1 | Six points plotted correctly |
| | U2 | Error bars in \(m_m \) plotted correctly |
| (ii) | G2 | Line of best fit |
| | G3 | Worst acceptable straight line. Steepest or shallowest possible line that passes through all the error bars. |
| (iii)| C1 | Gradient of best fit line |
| | U3 | Difference in worst gradient and gradient. |
| (iv) | C2 | \(y \)-intercept |
| | U4 | Uncertainty in \(y \)-intercept |
| (d)(i)| C3 | \(c_m \) in the range 470 to 530 and given to 2 or 3sf |
| | C4 | \(k = y \)-intercept x \(P - m_w c_m \Delta \theta \)
 \(k = y \)-intercept x 50 – 21000 |
| | C5 | Units for \(c_m \) and \(k \) |
| (ii) | U5 | Percentage uncertainty in \(c_m \) |

[Total: 15 marks]
Uncertainties in Question 2

(c) (iii) Gradient [U3]

1. Uncertainty = gradient of line of best fit – gradient of worst acceptable line
2. Uncertainty = \(\frac{1}{2} \) (steepest worst line gradient – shallowest worst line gradient)

(iv) [U4]

1. Uncertainty = \(y \)-intercept of line of best fit – \(y \)-intercept of worst acceptable line
2. Uncertainty = \(\frac{1}{2} \) (steepest worst line \(y \)-intercept – shallowest worst line \(y \)-intercept)

(d) (ii) [U5]

1. \(\% \) uncertainty = \(\left(\frac{\Delta \text{gradient}}{\text{gradient}} + \frac{5}{50} + \frac{0.5}{20} \right) \times 100 = \left(\frac{\Delta \text{gradient}}{\text{gradient}} \right) \times 100 + 12.5\%
2. \(\text{max} \ c_m = \frac{\text{max gradient} \times \text{max power}}{\text{min temperature change}} = \frac{\text{max gradient} \times 55}{19.5}
3. \(\text{min} \ c_m = \frac{\text{min gradient} \times \text{min power}}{\text{max temperature change}} = \frac{\text{min gradient} \times 45}{20.5} \)