This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.
Mark Scheme Notes

Marks are of the following three types:

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

• When a part of a question has two or more “method” steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

• The symbol \checkmark implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously “correct” answers or results obtained from incorrect working.

• Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

• Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

• For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

© UCLES 2016
The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only – often written by a ‘fortuitous’ answer

ISW Ignore Subsequent Working

SOI Seen or implied

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become “follow through” marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mark Scheme</td>
<td></td>
<td>Syllabus</td>
<td>Paper</td>
</tr>
<tr>
<td></td>
<td>Cambridge International A Level – October/November 2016</td>
<td></td>
<td>9709</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>Solve for 3^x and obtain $3^x = \frac{18}{7}$</td>
<td>B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use correct method for solving an equation of the form $3^x = a$, where $a > 0$</td>
<td>M1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obtain answer $x = 0.860$ 3 d.p. only</td>
<td>A1</td>
<td>[3]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>State correct unsimplified first two terms of the expansion of $(1 + 2x)^{\frac{3}{2}}$, e.g. $1 + (-\frac{3}{2})(2x)$</td>
<td>B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>State correct unsimplified term in x^2, e.g. $(-\frac{3}{2})(-\frac{3}{2} - 1)(2x)^2 / 2!$</td>
<td>B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obtain sufficient terms of the product of $(2 - x)$ and the expansion up to the term in x^2</td>
<td>M1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obtain final answer $2 - 7x + 18x^2$ Do not ISW</td>
<td>A1</td>
<td>[4]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>EITHER: Correctly restate the equation in terms of $\sin \theta$ and $\cos \theta$</td>
<td>B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correct method to obtain a horizontal equation in $\sin \theta$</td>
<td>M1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduce the equation to a correct quadratic in any form, e.g. $3\sin^2 \theta - \sin \theta - 2 = 0$</td>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solve a three-term quadratic for $\sin \theta$</td>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obtain final answer $\theta = -41.8^\circ$ only</td>
<td>A1</td>
<td>[5]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Ignore answers outside the given interval.]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR 1: Square both sides of the equation and use $1 + \tan^2 \theta = \sec^2 \theta$</td>
<td>B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correct method to obtain a horizontal equation in $\sin \theta$</td>
<td>M1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduce the equation to a correct quadratic in any form, e.g. $9\sin^2 \theta - 6\sin \theta - 8 = 0$</td>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solve a three-term quadratic for $\sin \theta$</td>
<td>M1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obtain final answer $\theta = -41.8^\circ$ only</td>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR 2: Multiply through by $(\sec \theta + \tan \theta)$</td>
<td>M1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use $\sec^2 \theta - \tan^2 \theta = 1$</td>
<td>B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obtain $1 = 3 + 3\sin \theta$</td>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solve for $\sin \theta$</td>
<td>M1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obtain final answer $\theta = -41.8^\circ$ only</td>
<td>A1</td>
<td>[5]</td>
<td></td>
</tr>
</tbody>
</table>
4 EITHER: EITHER: State $2xy + x^2 \frac{dy}{dx}$, or equivalent, as derivative of x^2y B1

State $6y^2 + 12xy \frac{dy}{dx}$, or equivalent, as derivative of $6xy^2$ B1

OR: Differentiating LHS using correct product rule, state term $xy(1 - 6 \frac{dy}{dx})$, or equivalent B1

State term $(y + x \frac{dy}{dx})(x - 6y)$, or equivalent B1

Equate attempted derivative of LHS to zero and set $\frac{dy}{dx}$ equal to zero M1*

Obtain a horizontal equation, e.g. $6y^2 - 2xy = 0$ (from correct work only) A1

Explicitly reject $y = 0$ as a possibility $py^2 - qxy = 0$ A1

Obtain an equation in x or y DM1

Obtain answer ($-3a, -a$) A1

OR: Rearrange to $y = \frac{9a^2}{x(x - 6y)}$ and use correct quotient rule to obtain $-\frac{9a^2}{x^2(x - 6y)}$... B1

State term $(x - 6y) + x(1 - 6y)$, or equivalent B1

Justify division by $x(x - 6y)$ B1

Set $\frac{dy}{dx}$ equal to zero M1*

Obtain a horizontal equation, e.g. $6y^2 - 2xy = 0$ (from correct work only) A1

Obtain an equation in x or y DM1

Obtain answer ($-3a, -a$) A1

[7]

5 (i) EITHER: Use tan 2A formula to express LHS in terms of tan θ M1

Express as a single fraction in any correct form A1

Use Pythagoras or cos 2A formula M1

Obtain the given result correctly A1

OR: Express LHS in terms of sin 2θ, cos 2θ, sin θ and cos θ M1

Express as a single fraction in any correct form A1

Use Pythagoras or cos 2A formula or sin(A – B) formula M1

Obtain the given result correctly A1

[4]

(ii) Integrate and obtain a term of the form $a \ln(\cos 2\theta)$ or $b \ln(\cos \theta)$ (or secant equivalents) M1*

Obtain integral $-\frac{1}{2} \ln(\cos 2\theta) + \ln(\cos \theta)$, or equivalent A1

Substitute limits correctly (expect to see use of both limits) DM1

Obtain the given answer following full and correct working A1

[4]
6 (i) Make recognizable sketch of a relevant graph
Sketch the other relevant graph and justify the given statement

 B1 B1 [2]

(ii) Use calculations to consider the value of a relevant expression at $x = 1.4$ and $x = 1.6$,
or the values of relevant expressions at $x = 1.4$ and $x = 1.6$
Complete the argument correctly with correct calculated values

 M1 A1 [2]

(iii) State $x = 2 \sin^{-1}\left(\frac{3}{x + 3}\right)$
Rearrange this in the form $\csc \frac{1}{2}x = \frac{1}{3}x + 1$
If working in reverse, need $\sin \frac{x}{2} = \left(\frac{3}{x + 3}\right)$ for first B1

 B1 B1 [2]

(iv) Use the iterative formula correctly at least once
Obtain final answer 1.471
Show sufficient iterations to 5 d.p. to justify 1.471 to 3 d.p., or show there is a sign
change in the interval (1.4705, 1.4715)

 M1 A1 A1 [3]

7 (i) Use the correct product rule
Obtain correct derivative in any form, e.g. $(2 - 2x)e^{\frac{x}{2}} + \frac{1}{2}(2x - x^2)e^{\frac{x}{2}}$
Equate derivative to zero and solve for x
Obtain $x = \sqrt{5} - 1$ only

(ii) Integrate by parts and reach $a(2x - x^2)e^{\frac{x}{2}} + b\int(2 - 2x)e^{\frac{x}{2}} \, dx$
Obtain $2e^{\frac{x}{2}}(2x - x^2) - 2\int(2 - 2x)e^{\frac{x}{2}} \, dx$, or equivalent
Complete the integration correctly, obtaining $(12x - 2x^2 - 24)e^{\frac{x}{2}}$, or equivalent
Use limits $x = 0$, $x = 2$ correctly having integrated by parts twice
Obtain answer 24 – 8e, or exact simplified equivalent

Question 8

Part (i)

State or imply a correct normal vector to either plane, e.g. \(3i + j - k\) or \(i - j + 2k\)

Use correct method to calculate their scalar product

Show value is zero and planes are perpendicular

- **B1**
- **M1**
- **A1**

Mark Awarding Information

[3]

Part (ii)

EITHER: Carry out a complete strategy for finding a point on \(l\) the line of intersection

- Obtain such a point, e.g. \((0, 7, 5)\), \((1, 0, 1)\), \((5/4, -7/4, 0)\)

- **B1**
- **A1**

EITHER: State two equations for a direction vector \(ai + bj + ck\) for \(l\),

- e.g. \(3a + b - c = 0\) and \(a - b + 2c = 0\)

- Solve for one ratio, e.g. \(a : b\)

- Obtain \(a : b : c = 1 : -7 : -4\), or equivalent

- State a correct answer, e.g. \(r = 7j + 5k + \lambda(i - 7j - 4k)\)

- **B1**
- **M1**
- **A1**

OR1:

- Obtain a second point on \(l\), e.g. \((1, 0, 1)\)

- Subtract vectors and obtain a direction vector for \(l\)

- Obtain \(-i + 7j + 4k\), or equivalent

- State a correct answer, e.g. \(r = i + k + \lambda(-i + 7j + 4k)\)

- **B1**
- **M1**
- **A1**

OR2:

- Attempt to find the vector product of the two normal vectors

- Obtain two correct components of the product

- Obtain \(i - 7j - 4k\), or equivalent

- State a correct answer, e.g. \(r = 7j + 5k + \lambda(i - 7j - 4k)\)

- **B1**
- **M1**
- **A1**

OR1:

- Express one variable in terms of a second variable

- Obtain a correct simplified expression, e.g. \(y = 7 - 7x\)

- Express the third variable in terms of the second

- Obtain a correct simplified expression, e.g. \(z = 5 - 4x\)

- Form a vector equation for the line

- Obtain a correct equation, e.g. \(r = 7j + 5k + \lambda(i - 7j - 4k)\)

- **B1**
- **M1**
- **A1**

OR2:

- Express one variable in terms of a second variable

- Obtain a correct simplified expression, e.g. \(z = 5 - 4x\)

- Express the same variable in terms of the third

- Obtain a correct simplified expression e.g. \(z = (7 + 4y)/7\)

- Form a vector equation for the line

- Obtain a correct equation, e.g. \(r = \frac{1}{7}i - \frac{7}{7}j + \lambda(-\frac{1}{7}i + \frac{1}{7}j + k)\)

- **B1**
- **M1**
- **A1**

Mark Awarding Information

[6]
9 (a) EITHER: Use quadratic formula to solve for \(w \)
- Use \(i^2 = -1 \)
- Obtain one of the answers \(w = \frac{1}{2i+1} \) and \(w = -\frac{5}{2i+1} \)
- Multiply numerator and denominator of an answer by \(-2i + 1\), or equivalent
- Obtain final answers \(\frac{1}{2} - \frac{3}{2}i \) and \(-1 + 2i\)

M1 **M1** **A1** **M1** **A1**

OR1: Multiply the equation by \(1 - 2i \)
- Use \(i^2 = -1 \)
- Obtain \(5w^2 + 4w(1 - 2i) - (1 - 2i)^2 = 0 \), or equivalent
- Use quadratic formula or factorise to solve for \(w \)
- Obtain final answers \(\frac{1}{2} - \frac{3}{2}i \) and \(-1 + 2i\)

M1 **M1** **A1** **M1** **A1**

OR2: Substitute \(w = x + iy \) and form equations for real and imaginary parts
- Use \(i^2 = -1 \)
- Obtain \((x^2 - y^2) - 4xy + 4x - 1 = 0\) and \(2(x^2 - y^2) + 2xy + 4y + 2 = 0\) o.e.
- Form equation in \(x \) only or \(y \) only and solve
- Obtain final answers \(\frac{1}{2} - \frac{3}{2}i \) and \(-1 + 2i\)

M1 **M1** **A1** **[5]**

(b) Show a circle with centre \(1 + i \)
- Show a circle with radius 2
- Show half-line \(\text{arg } z = \frac{1}{4} \pi \)
- Show half-line \(\text{arg } z = -\frac{3}{4} \pi \)
- Shade the correct region

B1 **B1** **B1** **B1** **[5]**
Question 10 (i)

Separate variables correctly and integrate at least one side

Integrate and obtain term kt, or equivalent

Carry out a relevant method to obtain A and B such that

$$\frac{1}{x(4-x)} = \frac{A}{x} + \frac{B}{4-x},$$

or equivalent

Obtain $A = B = \frac{1}{4}$, or equivalent

Integrate and obtain terms $\frac{1}{4}\ln x - \frac{1}{4}\ln(4-x)$, or equivalent

EITHER: Use a pair of limits in an expression containing $p\ln x$, $q\ln(4-x)$ and rt and evaluate a constant

Obtain correct answer in any form, e.g.

$$\ln \ln x - \ln(4-x) = 4kt - \ln 9,$$

or

$$\ln \left(\frac{x}{4-x}\right) = 4kt - 8k$$

Use a second pair of limits and determine k

Obtain the given exact answer correctly

OR: Use both pairs of limits in a definite integral

Obtain the given exact answer correctly

Substitute k and either pair of limits in an expression containing $p\ln x$, $q\ln(4-x)$ and rt and evaluate a constant

Obtain

$$\ln \frac{x}{4-x} = t\ln 3 - \ln 9$$

or equivalent

Question 10 (ii)

Substitute $x = 3.6$ and solve for t

Obtain answer $t = 4$