This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of
the examination. It shows the basis on which Examiners were instructed to award marks. It does not
indicate the details of the discussions that took place at an Examiners’ meeting before marking began,
which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner
Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most
Cambridge IGCSE®, Cambridge International A and AS Level components and some
Cambridge O Level components.
Mark Scheme Notes

Marks are of the following three types:

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

• When a part of a question has two or more “method” steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

• The symbol \checkmark implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously “correct” answers or results obtained from incorrect working.

• Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

• Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

• For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.
The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally acceptable)

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no “follow through” from a previous error is allowed)

CWO Correct Working Only – often written by a ‘fortuitous’ answer

ISW Ignore Subsequent Working

MR Misread

PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become “follow through” marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(i)</td>
<td>$15 + F \cos 60^\circ = F \cos 30^\circ$</td>
<td>M1</td>
<td>For resolving forces in the x direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$F = 41.0$</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$15 + F \cos 60^\circ = F \cos 30^\circ$</td>
<td>A1</td>
<td>AG $F = 15(1 + \sqrt{3})$</td>
</tr>
<tr>
<td></td>
<td>(ii)</td>
<td>$[G = F (\sin 30^\circ + \sin 60^\circ)]$</td>
<td>M1</td>
<td>For resolving forces in the y direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$G = 56.0$</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$15(2 + \sqrt{3})$</td>
<td>Allow $15(2 + \sqrt{3})$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(i)</td>
<td>$[v^2 = (V - 10)^2 + 2g \times 35]$</td>
<td>M1</td>
<td>For using $v^2 = u^2 + 2gs$ to obtain an equation in V only or to obtain two equations in V and H and attempting to eliminate H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$20V = 100 + 70g$</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V = 40$</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternative for 2(i)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td></td>
<td>$V = V - 10 + 10t \rightarrow t = 1$ and $35 = (V - 10) \times 1 + \frac{1}{2} \times 10 \times 1^2$ or $35 = (V - 10 + V) / 2 \times 1$</td>
<td>M1</td>
<td>A complete method to find V by considering the final 35 m using $v = u + at$ and either $s = ut + \frac{1}{2}at^2$ or $s = (u + v) / 2 \times t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V = 40$</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>(ii)</td>
<td></td>
<td>$[40^2 = 0^2 + 20H]$</td>
<td>M1</td>
<td>For using $v^2 = u^2 + 2gs$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$H = 80$</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(i)</td>
<td>$[a(t) = 0.00012t^2 - 0.012t + 0.288]$</td>
<td>M1</td>
<td>For attempting to differentiate $v(t)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$[a(t) = 0.00012(t^2 - 100t + 2400) = 0.00012(t - 40)(t - 60) = 0]$</td>
<td>dM1</td>
<td>For setting $a(t) = 0$ and attempting to solve a three term quadratic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$a(t) = 0$ when $t = 40$ and $t = 60$</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>(ii)</td>
<td></td>
<td>$[0.00001t^4 - 0.002t^3 + 0.144t^2]$</td>
<td>M1</td>
<td>For attempting to integrate $v(t)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$[0.00001(100)^4 - 0.002(100)^3 + 0.144(100)^2]$</td>
<td>dM1</td>
<td>Integration attempted using correct limits $t = 0$ to $t = 100$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Displacement is 440 m</td>
<td>A1</td>
<td></td>
</tr>
</tbody>
</table>

© Cambridge International Examinations 2015
For using $R = 2 \cos 45^\circ$ and $F = \mu R$

<table>
<thead>
<tr>
<th>M1</th>
<th>For using $R = 2 \cos 45^\circ$ and $F = \mu R$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>A1</th>
<th>Frictional force $= 0.4 \times 2 \cos 45$ $= 0.4 \sqrt{2}$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>B1</th>
<th>KE gain $= \frac{1}{2} \times 0.2 \times V_C^2$ and PE loss $= 0.2 \times g \times (2.5 + 2 \sqrt{2})$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>A1</th>
<th>$0.1 \times V_C^2 = (5 + 4 \sqrt{2}) - 0.4 \sqrt{2} \times 4$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>A1</th>
<th>Speed at C is 9.16 ms^{-1}</th>
</tr>
</thead>
</table>

First alternative for the last four marks

<table>
<thead>
<tr>
<th>B1</th>
<th>For using KE gain from B to C = PE loss from B to C – Work done by frictional force</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>M1</th>
<th>For using KE gain from A to C = PE loss from A to C – Work done by frictional force</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>A1</th>
<th>$0.1 \times (V_C^2 - V_B^2) = 0.2 \times g \times (4 \times \sqrt{2}) - 0.4 \sqrt{2} \times 4$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>A1</th>
<th>Speed at C is 9.16 ms^{-1}</th>
</tr>
</thead>
</table>

Second alternative for the last four marks

<table>
<thead>
<tr>
<th>B1</th>
<th>For using Newton’s 2nd law to find acceleration along BC and using $v^2 = u^2 + 2as$ to find V_C</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>M1</th>
<th>For using Newton’s 2nd law to find acceleration along BC and using $v^2 = u^2 + 2as$ to find V_C</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>A1</th>
<th>$\sqrt{2} - 0.4 \sqrt{2} = 0.2a \rightarrow a = 3 \sqrt{2} \text{ ms}^{-2}$ and $V_C^2 = V_B^2 + 2 \times 3 \sqrt{2} \times 4$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>A1</th>
<th>Speed at C is 9.16 ms^{-1}</th>
</tr>
</thead>
</table>
Question 5 (i)

For applying Newton 2\(^{nd}\) law to \(P\) or \(Q\) for applying N2 to the system

\[
0.5g \times \frac{7}{25} - T = 0.5a
\]

\[
T - 0.1g = 0.1a
\]

\[
1.4 - 1 = 0.6a
\]

For eliminating \(T\) and obtaining

\[
a = \frac{2}{3} \text{ ms}^{-2}
\]

Tension is 1.07 N

Any two correct

Allow sin 16.3 for 7/25

M1

A1

B1

M1

A1

5

Allow \(T = 16/15\) N

Question 5 (ii)

For using \(v^2 = u^2 + 2as\) to find the speed of the particles immediately before the string breaks

\[
[v^2 = 2 \times \left(\frac{2}{3}\right) \times 0.7]
\]

For applying \(v^2 = u^2 + 2as\) for the motion of \(P\) when the string is slack and \(s\) is the distance travelled by \(P\) after the break until it reaches the floor

\[
2^2 = 2 \times \frac{2}{3} \times 0.7 + 2 \times 0.28 \times s
\]

Length of string = 2.5 – \(s\) = 1.95 m

A1

3

Allow length = 41/21 m

Question 6 (i)

For resolving forces horizontally

\[
F = 0.195 \cos 22.6 = 0.195 \times \frac{12}{13}
\]

\[
= 0.18 = \frac{9}{50}
\]

M1

A1

\([R = 0.24 + 0.195 \sin \theta]\)

\[
R = 0.24 + 0.195 \sin 22.6 =
\]

\[
0.24 + 0.195 \times \frac{5}{13} = 0.315
\]

\[
= \frac{63}{200}
\]

M1

A1

For using \(\mu = F/R\)

Coefficient \(\mu = 4/7\) or 0.571

A1

6
(ii) \[R = 0.24 - 0.195\sin 22.6 \]
\[= 0.24 - 0.195 \times \frac{5}{13} \]
\[= 0.165 = \frac{33}{200} \]
B1
M1
For using Newton’s second law for motion along the rod

\[0.195 \times \frac{12}{13} - \left(\frac{4}{7} \right) \times 0.165 \]
A1
\[= 0.024a \]

Acceleration is 3.57 ms⁻²
A1
4
Allow acceleration = 25/7

7 (i) \[[WD = 14000 \times 25] \]
M1
For using \(P = \frac{WD}{\Delta t} \)

Work done is 350 kJ or 350 000 J
A1
2

(ii) \[14000/v_A - 235 = 1600 \times 0.5 \rightarrow v_A = 13.53 \text{ ms}^{-1} \]
A1

14000/v_B - 235 = 1600 \times 0.25 \rightarrow v_B = 22.05 \text{ ms}^{-1} \]
A1

[KE gain = \(\frac{1}{2} 1600(22.05^2 - 13.53^2) \)]
M1

KE gain = 242.5 kJ or 242 500 J
A1
5
For using KE gain
\[= \frac{1}{2} m(v_B^2 - v_A^2) \]

(iii) \[350 000 = 242 500 + 235 \times AB \]
A1

Distance \(AB \) is 457 m
A1
3
For using WD by DF
\[= \text{KE gain} + \text{resistance} \times AB \]