This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.
Mark Scheme Notes

Marks are of the following three types:

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

• When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

• The symbol \checkmark implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

• Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

• Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

• For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.
The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that
 the detailed working leading to the result is valid)
BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely
 clear)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error
 is allowed)
CWO Correct Working Only – often written by a ‘fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently
 accurate)
SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a
 case where some standard marking practice is to be varied in the light of a
 particular circumstance)

Penalties

MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or
 part question are genuinely misread and the object and difficulty of the question
 remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is
 regarded as an error in accuracy. An MR–2 penalty may be applied in particular
 cases if agreed at the coordination meeting.

PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.
Mark Scheme

Syllabus Paper

GCE AS LEVEL – October/November 2012

<table>
<thead>
<tr>
<th>Question</th>
<th>Mark Scheme</th>
<th>Syllabus</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EITHER State or imply non-modular inequality ((2x + 1)^2 < (2x - 5)^2), or corresponding equation or pair of linear equations</td>
<td>M1</td>
<td>9709</td>
</tr>
<tr>
<td></td>
<td>Obtain critical value 1</td>
<td>A1</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>State correct answer (x < 1)</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>State the critical value (x = 1), by solving a linear equation (or inequality) or from a graphical method or by inspection</td>
<td>B2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>State correct answer (x < 1)</td>
<td>B1</td>
<td>[3]</td>
</tr>
<tr>
<td></td>
<td>Use quotient rule or product rule, correctly</td>
<td>M1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obtain correct derivative in any form</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equate derivative to zero and solve for (x)</td>
<td>M1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obtain (x = \frac{\pi}{8})</td>
<td>A1</td>
<td>[4]</td>
</tr>
<tr>
<td>2</td>
<td>(i) Attempt division by (x^2 - 3x + 2) or equivalent, and reach a partial quotient of (x^2 + kx)</td>
<td>M1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obtain partial quotient (x^2 - x)</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obtain (x^2 - x - 2) with no errors seen</td>
<td>A1</td>
<td>[3]</td>
</tr>
<tr>
<td>(ii)</td>
<td>Correct solution method for either quadratic e.g. factorisation</td>
<td>M1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>One correct solution from solving quadratic or inspection</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All solutions (x = 2), (x = 1) and (x = -1) given and no others</td>
<td>A1</td>
<td>[3]</td>
</tr>
<tr>
<td>3</td>
<td>(i) State or imply correct ordinates 1.4142…, 1.1370…, 1</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use correct formula, or equivalent, correctly with (h = \frac{\pi}{4}) and three ordinates</td>
<td>M1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obtain answer 1.84 with no errors seen</td>
<td>A1</td>
<td>[3]</td>
</tr>
<tr>
<td>(ii)</td>
<td>Use the iterative formula correctly at least once</td>
<td>M1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obtain final answer 1.06</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Show sufficient iterations to justify its accuracy to 2 d.p. or show there is a sign change in the interval (1.055, 1.065)</td>
<td>B1</td>
<td>[3]</td>
</tr>
<tr>
<td>4</td>
<td>State or imply (\ln y = \ln A - x \ln b)</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Form a numerical expression for the gradient of the line</td>
<td>M1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obtain (b = 1.82)</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use gradient and one point correctly to find (\ln A)</td>
<td>M1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obtain (\ln A = 3.5)</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obtain (A = 33.12)</td>
<td>A1</td>
<td>[6]</td>
</tr>
</tbody>
</table>
6 (a) Obtain integral \(ke^{-\frac{1}{2}x} \) with any non-zero \(k \)
Correct integral \[A1 \] [2]

(b) State indefinite integral of the form \(k \ln (3x - 1) \), where \(k = 2, 6 \) or 3
State correct integral \(2 \ln (3x - 1) \)
Substitute limits correctly (must be a function involving a logarithm)
Use law for the logarithm of a power or a quotient
Obtain given answer correctly \[A1 \] [5]

7 (i) State \(4y \frac{dy}{dx} \) as derivative of \(2y^2 \), or equivalent \[B1 \]
State \(4y + 4x \frac{dy}{dx} \) as derivative of \(4xy \), or equivalent \[B1 \]
Equate derivative of LHS to zero and solve for \(\frac{dy}{dx} \)
Obtain given answer correctly \[A1 \] [4]

(ii) State or imply that the coordinates satisfy \(3x - 2y = 0 \)
Obtain an equation in \(x^2 \) (or \(y^2 \)) \[M1 \]
Solve and obtain \(x^2 = 4 \) (or \(y^2 = 9 \)) \[A1 \]
State answer \((2, 3) \) \[A1 \]
State answer \((-2, -3) \) \[A1 \] [5]

8 (a) Use \(\tan(A + B) \) formula to obtain an equation in \(\tan B \)
State equation \(\frac{t + \tan B}{1 - t \tan B} = 4 \), or equivalent \[A1 \]
Solve to obtain \(\tan B = \frac{4 - t}{1 + 4t} \) \[A1 \] [3]

(b) State equation \(2 \left(\frac{\tan 45 - \tan x}{1 + \tan 45 \tan x} \right) = 3 \tan x \), or equivalent \[B1 \]
Transform to a quadratic equation \[M1 \]
 Obtain \(3 \tan^2 x + 5 \tan x - 2 = 0 \) (or equivalent) \[A1 \]
Solve the quadratic and calculate one angle, or establish that \(\tan x = \frac{1}{3}, -2 \) \[M1 \]
Obtain one answer, e.g. \(x = 18.4^\circ \) \[A1 \]
Obtain other 3 answers \(116.6^\circ, 198.4^\circ, 296.6^\circ \) and no others in range \[A1 \] [6]