This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.
Mark Scheme Notes

Marks are of the following three types:

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

 The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

© UCLES 2008
The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally acceptable)

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer

ISW Ignore Subsequent Working

MR Misread

PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.
Question 1

\[
\left(\frac{x + \frac{2}{x}}{2}\right)^6
\]

Term in \(x^2\)

\[
\left(\frac{x}{2}\right)^4 \left(\frac{2}{x}\right)^2 \times 15
\]

Coeff = \(\frac{15}{4}\) or 3.75

- **M1** Correct term – needs powers 4 and 2
- **A1** For \(\times 15\)
- **A1** Ignore inclusion of \(x^2\)

[3]

Question 2

\[
\frac{1 + \sin x + \cos x}{\cos x} \equiv \frac{2}{1 + \sin x}
\]

LHS

\[
\frac{(1 + \sin x)^2 + \cos^2 x}{\cos x(1 + \sin x)}
\]

M1 Reasonable algebra. Correct denominator and one term correct in numerator

\[
= \frac{2 + 2\sin x}{\cos x(1 + \sin x)}
\]

M1 Use of \(\sin^2 x + \cos^2 x = 1\)

A1 For \(2 + 2\sin x\)

A1 Co – answer was given – check preceding line

[4]

Question 3

1st term = \(a = 6\)

5th term = \(a + 4d = 12\)

\(\rightarrow d = 1.5\)

\(S_n = \frac{n}{2} (12 + (n - 1)1.5) = 90\)

\(\rightarrow n^2 + 7n - 120 = 0\)

\(\rightarrow n = 8\)

- **B1** Correct value of \(d\)
- **M1** Use of correct formula with his \(d\)
- **DM1** Correct method for soln of quadratic
- **A1** Co (ignore inclusion of \(n = -15\))

[4]

Question 4

(i) \(\overrightarrow{PA} = -6i - 8j - 6k\)

\(\overrightarrow{PN} = 6i + 2j - 6k\)

- **B1** Co – column vectors ok
- **B2, 1** One off for each error (all incorrect sign – just one error)

(ii) \(\overrightarrow{PA} \cdot \overrightarrow{PN} = -36 - 16 + 36 = -16\)

\(\cos \overrightarrow{APN} = \frac{-16}{\sqrt{136}\sqrt{76}}\)

\(\rightarrow \overrightarrow{APN} = 99^\circ\)

- **M1** Use of \(x_1x_2 + y_1y_2 + z_1z_2\)
- **M1** Modulus worked correctly for either one
- **M1** Division of "$-16" by "product of moduli"
- **A1** Allow more accuracy

[4]
\(x \mapsto a - b \cos x \)

(i) \[a + b = 10 \quad \text{and} \quad a - b = -2 \]
\[\Rightarrow a = 4 \quad \text{and} \quad b = 6 \]

M1 A1 A1
M1 for either correct. A1 both correct
Co

\[(i) \ a = 4, \ b = -6, \ (ii) 131.8, 228.2, \]

(iii) Sketch is mirror image in \(y = 4 \)

M1
A1 A1
\[\sqrt{3} \]
Makes \(\cos x \) subject and uses \(\cos^{-1} \).
For 1st angle. \(\sqrt{ \) for 360° – "his angle"

(ii) \[4 - 6 \cos x = 0 \]
\[\Rightarrow \cos x = 2/3 \]
\[\Rightarrow x = 48.2° \text{ or } 311.8° \]

M1
A1 A1
\[\sqrt{3} \]
Makes \(\cos x \) subject and uses \(\cos^{-1} \).
For 1st angle. \(\sqrt{ } \) for 360° – "his angle"

(iii) Must be just one cycle
Starts at –2 and ends at –2
Max at 10.
"V shapes " lose a mark.
Parabolas lose 1 mark.

B2,1

6 (i) Using \(s = r \theta, 9 = 5 \theta \Rightarrow \theta = 1.8 \text{ rad.} \)

M1 A1 A1
Use of formula. co

(ii) Uses \(\text{POT}. \) Halves the angle
Uses tangent in \(\text{POT} \)
\[PT = 5 \tan 0.9 = 6.30 \text{ cm (not 6.31)} \]

M1 M1 A1
Realises the need to halve
Use of tangent – even if angle not halved
co

(iii) area of sector = \(\frac{1}{2} \times 5^2 \times 1.8 \) (22.5)
Area of \(\text{POT} = \frac{1}{2} \times 5 \times 6.30 \) (15.75)
Shaded area = 2 triangles – sector
\[\Rightarrow 9.00 \text{ (allow 8.95 to 9.05)} \]

M1 M1 A1
Use of \(A = \frac{1}{2} r^2 \theta \) with 1.8 or 0.9.
Use of \(\frac{1}{2} bh \) and (2 triangles – sector)
co

7 (i) \[4x + 2\pi r = 80 \]
\[A = x^2 + \pi r^2 \]
\[\Rightarrow A = \frac{(\pi + 4)x^2 - 160x + 1600}{\pi} \]

B1 B1
Connection of lengths
Connection of areas
M1 A1 A1
Eliminates \(r. \) co but answer given.

(ii) \[\frac{dA}{dx} = \frac{2(\pi + 4)x - 160}{\pi} \]
\[= 0 \text{ when } x = \frac{160}{2(\pi + 4)} \text{ or 11.2} \]

M1 A1 A1
Attempt at differentiation. co
Ignore omission of \(\pi. \)
Sets to 0 and solves.
co
8 \(y = 5 - \frac{8}{x} \), \(P(2, 1) \)

(i) \(\frac{dy}{dx} = \frac{8}{x^2} \)

 \(m \text{ of tan} = 2 \quad m \text{ of normal} = -\frac{1}{2} \)

 Eqn of normal \(y - 1 = -\frac{1}{2} (x - 2) \)
 \(\rightarrow 2y + x = 4 \)

 B1 Correct differentiation

M1 Use of \(m_1m_2 = -1 \)

M1 Correct method for line

A1 Answer given

[4]

(ii) Sim eqns \(2y + x = 4, \quad y = 5 - \frac{8}{x} \)
 \(\rightarrow x^2 + 6x - 16 = 0 \) or \(y^2 - 7y + 6 = 0 \)
 \(\rightarrow (-8, 6) \)

M1 Complete elimination of \(x \) or \(y \)

DM1 A1 Soln of quadratic. co

[3]

(iii) Length = \(\sqrt{10^2 + 5^2} = \sqrt{125} \)
 \(\rightarrow 11.2 \) (accept \(\sqrt{125} \) or \(5\sqrt{5} \) etc)

M1 Correct use of Pythagoras

A1 For his points.

[2]

9 \(y = \sqrt{3x + 1} \)

(i) \(A = \int x \ dy = \int_0^1 \frac{y^3}{3} - \frac{1}{3} \ dy \)

\[= \left[\frac{y^3}{9} - \frac{y}{3} \right] = \frac{4}{9} \] (allow 0.44 to 0.45)

B1 B1 M1 A1

A1 Integration correct

DM1 A1 Use of limits 0 to 1. co

[4]

[or \(2 - \int \sqrt{3x + 1} \ dx = 2 - \left[\frac{(3x + 1)^{3/2}}{3} \right]_{\frac{1}{3}} = \frac{4}{9} \]

B1 B1 M1 A1

(ii) \(V = \pi \int y^2 \ dx = \pi \int (3x + 1) \ dx \)

\[= \pi \left(\frac{3x^2}{2} + x \right) \] from 0 to 1

Vol of cylinder = \(\pi \times 2^2 \times 1 = 4\pi \)

\(\rightarrow \text{Subtraction} \rightarrow 1.5 \pi (4.71) \)

B1 Or by integration of \(y^2 = 4 \)

A1 co

[4]
(iii) \[\frac{dy}{dx} = \frac{1}{y} (3x + 1)^{1/2} \times 3 \]

If \(x = 0 \), \(m = \frac{3}{2} \). If \(x = 1 \), \(m = \frac{3}{4} \)
At \(x = 0 \), angle = 56.3°
At \(x = 1 \), angle = 36.9°
\[\rightarrow \text{angle between} = 19.4° \]

Could use vectors, or \(\tan(A - B) \) formula.
Could also find tangents, point of intersection, 3 lengths and cosine rule.

10. \(f: x \mapsto 3x - 2 \)

(i)
\[y = f(x) \]
\[y = x \]
\[y = \frac{1}{3} (x + 2) \]

(ii) \(gf(x) = 6(3x - 2) - (3x - 2)^2 \)
\[= -9x^2 + 30x - 16 \]
\[\frac{d}{dx} = -18x + 30 \]
\[= 0 \text{ when } x = 5/3 \]
\[\rightarrow \text{Max of } 9 \]
\[(gf(x)) = 9 - (3x - 5)^2 \rightarrow \text{Max 9} \]

(iii) \(6x - x^2 = 9 - (x - 3)^2 \)

(iv) \(y = 9 - (3 - y)^2 \)
\[3 - x = \pm \sqrt{9 - y} \]
\[\rightarrow h^{-1}(x) = 3 + \sqrt{(9 - x)} \]

B1 M1 B1 for everything but \(\times 3 \). M1 for \(\times 3 \).

M1 Linking angle with tangent once

A1 co

[4]

[2]

[5]

B1 M1 Must be \(gf \), not \(fg \)
A1 Co
M1 Differentiates or completes square
DM1 Sets to 0, solves and attempts to find \(y \)
A1 All ok – answer was given

[5]

B1, B1 Does not need \(a \) or \(b \).

[2]

M1 Order of operations in making \(x \) subject
DM1 Interchanging \(x \) and \(y \)
A1 Allow if \(\pm \) given

[3]

(Special case \(\rightarrow \) if correct with \(y \) instead of \(x \), give 2 out of 3)