MARK SCHEME for the November 2003 question papers

<table>
<thead>
<tr>
<th>Code</th>
<th>Paper Description</th>
<th>Maximum Raw Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>9709/01</td>
<td>Paper 1 (Pure 1), maximum raw mark 75</td>
<td></td>
</tr>
<tr>
<td>9709/02</td>
<td>Paper 2 (Pure 2), maximum raw mark 50</td>
<td></td>
</tr>
<tr>
<td>9709/03</td>
<td>Paper 3 (Pure 3), maximum raw mark 75</td>
<td></td>
</tr>
<tr>
<td>9709/04</td>
<td>Paper 4 (Mechanics 1), maximum raw mark 50</td>
<td></td>
</tr>
<tr>
<td>9709/05</td>
<td>Paper 5 (Mechanics 2), maximum raw mark 50</td>
<td></td>
</tr>
<tr>
<td>9709/06</td>
<td>Paper 6 (Probability and Statistics 1), maximum raw mark 50</td>
<td></td>
</tr>
<tr>
<td>9709/07</td>
<td>Paper 7 (Probability and Statistics 2), maximum raw mark 50</td>
<td></td>
</tr>
</tbody>
</table>

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners’ meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2003 question papers for most IGCSE and GCE Advanced Level syllabuses.
Mark Scheme Notes

• Marks are of the following three types:

 M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

 A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

 B Mark for a correct result or statement independent of method marks.

• When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

• The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

• Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

• Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

• For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.
• The following abbreviations may be used in a mark scheme or used on the scripts:

 AEF Any Equivalent Form (of answer is equally acceptable)
 AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
 BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
 CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
 CWO Correct Working Only – often written by a 'fortuitous' answer
 ISW Ignore Subsequent Working
 MR Misread
 PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
 SOS See Other Solution (the candidate makes a better attempt at the same question)
 SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

• MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.

• PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.
GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/01

MATHEMATICS
Pure Mathematics : Paper One
<table>
<thead>
<tr>
<th>Question</th>
<th>Mark Scheme</th>
</tr>
</thead>
</table>
| 1 | x(11-2x) = 12
2x²-11x+12=0
Solution of quadratic
→ (1½,8) and (4,3) | M1 A1 DM1 A1 [4] Complete elimination of x, or of y. Correct quadratic. (or y²-11y+24=0) Correct method of solution→2values All correct (guesswork or TI B1 for one pair of values, full marks for both) |
| 2 | (i) 4s⁴+5=7(1-s²)
(ii) 4s⁴+7s²-2=0
→ s² = ¼ or s² = -2
→ sinθ = ±½
→ θ = 30° and 150°
and θ = 210° and 330° | B1 [1] M1 A1A1√ A1√ [4] Use of s²+c²=1. Answer given. Recognition of quadratic in s² Co. For 180° - “his value” For other 2 answers from “his value”, providing no extra answers in the range or answers from s²=−1 |
| 3 | (a) a=60, n=48, Sₙ=3726
Sₙ formula used
→ d = $0.75
3rd term = a+2d = $61.50
(b) a=6
ar =4
Sₙ = a/(1-r) = 18 | M1 A1 A1√ [3] M1 M1A1 [3] Correct formula (M0 if nth term used) Use of a+2d with his d. 61.5 ok. a, ar correct, and r evaluated Correct formula used, but needs r <1 for M mark |
| 4 | (i) y = x³ - 2x² + x
(1,5) used to give c= 5
(ii) 3x²-4x+1>0
→ end values of 1 and 1
→ x<½ and x>1 | B2,1,0 B1√ [3] M1 A1 A1 [3] Co - unsimplified ok. Must have integrated + use of x=1and y=5 for c Set to 0 and attempt to solve. Co for end values – even if <,>,=,etc Co (allow ≤ and ≥). Allow 1<x<½ |
| 5 | (i) m of BC = ½
Eqn BC y-6=½(x-4)
m of CD = -2
eqn CD y-5=−2(x-12) | B1 M1A1√ M1 A1√ [5] Co Correct form of eqn. √ on m=”½.” Use of m₁m₂=-1 √ on his “½” but needs both M marks. |
| (ii) Sim eqns 2y=x+8 and y+2x=29
Question 6

(i) \(20 = 2r + r\theta\)
\[
\theta = \frac{20}{r} - 2
\]
(ii) \(A = \frac{1}{2}r^2\theta\)
\[
A = 10r - r^2
\]
(iii) Cos rule \(PQ^2 = 8^2 + 8^2 - 2 \cdot 8 \cdot 8 \cos 0.5\)
\[\text{Or trig } PQ = 2 \times 8 \sin 0.25\]
\[
\rightarrow PQ = 3.96 \text{ (allow 3.95).}
\]

Mark Scheme

- (i) Eqn formed + use of \(r\theta\) + at least one \(r\)
- Answer given.

- (ii) Appropriate use of \(\frac{1}{2}r^2\theta\)
- Co – but ok unsimplified – eg \(\frac{1}{2}r^2(20/r) - 2\)

- (iii) Recognition of “chord” + any attempt at trigonometry in triangle.
- Correct expression for \(PQ\) or \(PQ^2\).
- Co

Question 7

(i) Height = 4
(ii) \(MC = 3i-6j-4k\)
\(MN = 6j - 4k\)

(iii) \(\text{MC, MN} = -36+16 = -20\)
\[
\text{MC, MN} = \sqrt{61} \sqrt{52} \cos \theta
\]
\[
\rightarrow \theta = 111^\circ
\]

Mark Scheme

- (i) Pythagoras or guess – anywhere, \(4k\) ok.
- \(\sqrt{4^2}\) for “4”. Special case B1 for \(-3i+6j+4k\)
- \(\sqrt{4^2}\) on “4”. Accept column vectors.

- (ii) Use of \(x_1y_1 + x_2y_2 + x_3y_3\). \(\sqrt{4}\) on \(MC\) and \(MN\)
- Product of two moduli and \(\cos \theta\).
- Co.

- (iii) \(\text{NB If both } MC \text{ and } MN \text{ “reversed”, allow } 111^\circ \text{ for full marks.}\)

Question 8

(i) \(y = 72 \div (2x^2) \text{ or } 36 \div x^2\)
\[
A = 4x^2 + 6xy
\]
\[
\rightarrow A = 4x^2 + 216 \div x
\]

(ii) \(\frac{dA}{dx} = 8x - 216 \div x^2\)
\[
= 0 \text{ when } 8x^3 = 216
\]
\[
\rightarrow x = 3
\]

(iii) Stationary value = 108 cm²
\[
\frac{d^2A}{dx^2} = 8 + 432 \div x^3
\]
\[
\rightarrow \text{Positive when } x = 3 \text{ Minimum.}
\]

Mark Scheme

- (i) Co from volume = \(lbh\).
- Attempts most of the faces (4 or more)
- Co – answer was given.

- (ii) Reasonable attempt at differentiation.
- Sets his differential to 0 and uses.
- Co. (answer = ±3 loses last A mark)

- (iii) For putting his \(x\) into his \(A\). Allow in (ii).
- Correct method – could be signs of \(\frac{dA}{dx}\)
- \(A\) mark needs \(\frac{d^2A}{dx^2}\) correct algebraically, + \(x=3\) + minimum. It does not need “24”.

© University of Cambridge Local Examinations Syndicate 2003
Question 9

(i) \(\frac{dy}{dx} = -\frac{24}{(3x+2)^2} \)

Equation of tangent: \(y - 1 = -\frac{3}{8}(x - 2) \)

Cuts \(y = 0 \) when \(x = \frac{16}{3} \)

Area of \(Q = \frac{1}{2} \times \frac{16}{3} \times 1 = \frac{8}{3} \)

- M1 A1 A1
- M1 A1 √
- M1 A1

[6]

Use of \(\text{fn of fn} \). Needs ×3 for M mark. Co.

Use of line form with \(\frac{dy}{dx} \). Must use calculus. √ on his \(\frac{dy}{dx} \). Normal M0.

Needs \(y = 0 \) and \(\frac{1}{2}bh \) for M mark.

(beware fortuitous answers)

(ii) \(\text{Vol} = \pi \int y^2 \, dx = \pi \int [64(3x+2)]^2 \, dx \)

Limits from 0 to 2

\(\rightarrow 8\pi \)

- M1
- A1 A1
- DM1
- A1

[5]

Uses \(y^2 \) + some integration → \((3x+2)^4 \).

A1 without the \(\div 3 \). A1 for \(\div 3 \) and \(\pi \)

Correct use of 0 and 2. DMO if 0 ignored.

Co. Beware fortuitous answers.

Question 10

(i) \(fg(x) = g \) first, then \(f \)

\(= \frac{8}{2-x} - 5 = 7 \)

\(\rightarrow x = \frac{1}{3} \)

(or \(f(g) = 7 \), \(A = 6 \), \(g(x) = 6 \), \(\rightarrow x = \frac{1}{3} \))

- M1
- DM1
- A1

[3]

Correct order - \(g \) first, then into \(f \).

Correct method of solution of \(fg = 7 \).

Co. (nb \(gf \) gets 0/3)

(M1 for 6. M1 for \(g(x) = 6 \). A1)

(ii) \(f^{-1} = \frac{1}{2}(x+5) \)

Makes \(y \) the subject: \(y = 4 \div (2-x) \)

\(\rightarrow g^{-1} = 2 - (\frac{4}{x}) \)

- B1
- M1
- A1

[3]

Anywhere in the question.

For changing the subject.

Co – any correct answer. (A0 if \(f(y) \)).

Algebra leading to a quadratic.

Quadratic = 0 \(+\) use of \(b^2 - 4ac \).

Correct deduction from correct quadratic.

[3]

(iv)

- B1
- B1
- B1

Sketch of \(f \)

Sketch of \(f^{-1} \)

Evidence of symmetry about \(y = x \).
November 2003

GCE AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/02

MATHEMATICS
Pure Mathematics : Paper Two
1 EITHER: State or imply non-modular inequality e.g. \(-2 < 8 - 3x < 2\), or \((8 - 3x)^2 < 2^2\), or corresponding equation or pair of equations M1
Obtain critical values \(2\) and \(\frac{1}{3}\) A1
State correct answer \(2 < x < \frac{1}{3}\) A1

OR: State one critical value (probably \(x = 2\)), from a graphical method or by inspection or by solving a linear equality or equation B1
State the other critical value correctly B1
State correct answer \(2 < x < \frac{1}{3}\) B1

[3]

2 State or imply at any stage \(\ln y = \ln k - x \ln a\) B1
Equate estimate of \(\ln y\) - intercept to \(\ln k\) M1
Obtain value for \(k\) in the range \(9.97 \pm 0.51\) A1
Calculate gradient of the line of data points M1
Obtain value for \(a\) in the range \(2.12 \pm 0.11\) A1

[5]

3 (i) EITHER: Substitute \(-1\) for \(x\) and equate to zero M1
Obtain answer \(a = 6\) A1

OR: Carry out complete division and equate remainder to zero M1
Obtain answer \(a = 6\) A1

[2]

(ii) Substitute \(6\) for \(a\) and either show \(f(x) = 0\) or divide by \((x - 2)\) obtaining a remainder of zero B1
EITHER: State or imply \((x + 1)(x - 2) = x^2 - x - 2\) B1
 Attempt to find another quadratic factor by division or inspection M1
State factor \((x^2 + x - 3)\) A1

OR: Obtain \(x^3 + 2x^2 - 2x - 3\) after division by \(x + 1\), or \(x^3 - x^2 - 5x + 6\) after division by \(x - 2\) B1
 Attempt to find a quadratic factor by further division by relevant divisor or by inspection M1
State factor \((x^2 + x - 3)\) A1

[4]

4 (i) State answer \(R = 2\) B1
Use trig formula to find \(\alpha\) M1
Obtain answer \(\alpha = \frac{\pi}{3}\) A1

[3]
(ii) Carry out, or indicate need for, evaluation of \(\cos^{-1}(\sqrt{2}/2) \) \(\text{M1}^* \)

Obtain, or verify, the solution \(\theta = \frac{7}{12}\pi \) \(\text{A1} \)

Attempt correct method for the other solution in range
i.e. \(\cos^{-1}(\sqrt{2}/2) + \alpha \) \(\text{M1}(\text{dep}^*) \)

Obtain solution \(\theta = \frac{1}{12}\pi : [\text{M1A0 for } \frac{25\pi}{12}] \) \(\text{A1} \)

[4]

5 (i) Make recognisable sketch of \(y = 2^x \) or \(y = x^2 \), for \(x < 0 \) \(\text{B1} \)

Sketch the other graph correctly \(\text{B1} \)

[2]

(ii) Consider sign of \(2^x - x^2 \) at \(x = -1 \) and \(x = -0.5 \), or equivalent \(\text{M1} \)

Complete the argument correctly with appropriate calculations \(\text{A1} \)

[2]

(iii) Use the iterative form correctly \(\text{M1} \)

Obtain final answer \(-0.77 \) \(\text{A1} \)

Show sufficient iterations to justify its accuracy to 2 s.f., or show there is a sign change in the interval \((-0.775, -0.765)\) \(\text{A1} \)

[3]

6 (i) State A is (4, 0) \(\text{B1} \)

State B is (0, 4) \(\text{B1} \)

[2]

(ii) Use the product rule to obtain the first derivative \(\text{M1}(\text{dep}) \)

Obtain derivative \((4 - x)e^x - e^x \), or equivalent \(\text{A1} \)

Equate derivative to zero and solve for \(x \) \(\text{M1} \text{ (dep)} \)

Obtain answer \(x = 3 \) only \(\text{A1} \)

[4]

(iii) Attempt to form an equation in \(p \) e.g. by equating gradients of \(OP \) and the tangent at \(P \), or by substituting \((0, 0) \) in the equation of the tangent at \(P \) \(\text{M1} \)

Obtain equation in any correct form e.g. \(\frac{4 - p}{p} = 3 - p \) \(\text{A1} \)

Obtain 3-term quadratic \(p^2 - 4p + 4 = 0 \), or equivalent \(\text{A1} \)

Attempt to solve a quadratic equation in \(p \) \(\text{M1} \)

Obtain answer \(p = 2 \) only \(\text{A1} \)

[5]

7 (i) Attempt to differentiate using the quotient, product or chain rule \(\text{M1} \)

Obtain derivative in any correct form \(\text{A1} \)

Obtain the given answer correctly \(\text{A1} \)

[3]
(ii) State or imply the indefinite integral is \(-\cot x\)
Substitute limits and obtain given answer correctly

\[B1 \]

(iii) Use \(\cot^2 x = \csc^2 x - 1\) and attempt to integrate both terms, or equivalent
Substitute limits where necessary and obtain a correct unsimplified answer
Obtain final answer \(\sqrt{3} - \frac{1}{3} \pi\)

\[A1 \]

(iv) Use \(\cos 2A\) formula and reduce denominator to \(2\sin^2 x\)
Use given result and obtain answer of the form \(k \sqrt{3}\)
Obtain correct answer \(\frac{1}{2} \sqrt{3}\)

\[A1 \]
MARK SCHEME

<table>
<thead>
<tr>
<th>MAXIMUM MARK: 75</th>
</tr>
</thead>
</table>

SYLLABUS/COMPONENT: 9709/03, 8719/03

MATHEMATICS
Mathematics and Higher Mathematics : Paper 3
1 EITHER: State or imply non-modular inequality −5 < 2^x − 8 < 5, or (2^x − 8)^2 < 5^2 or corresponding pair of linear equations or quadratic equation B1
Use correct method for solving an equation of the form 2^x = a M1
Obtain critical values 1.58 and 3.70, or exact equivalents A1
State correct answer 1.58 < x < 3.70 A1

OR: Use correct method for solving an equation of the form 2^x = a M1
Obtain one critical value (probably 3.70), or exact equivalent A1
Obtain the other critical value, or exact equivalent A1
State correct answer 1.58 < x < 3.70 A1

[4]

[Allow 1.59 and 3.7. Condone ≤ for <. Allow final answers given separately. Exact equivalents must be in terms of ln or logarithms to base 10.]
[SR: Solutions given as logarithms to base 2 can only earn M1 and B1 of the first scheme.]

2 EITHER: Obtain correct unsimplified version of the x^2 or x^4 term of the expansion of
(1 + \frac{1}{2}x^2)^2 or (2 + x^2)^2 M1
State correct first term \frac{1}{4} B1
Obtain next two terms −\frac{1}{4}x^2 + \frac{1}{16}x^4 A1+A1

[The M mark is not earned by versions with unexpanded binomial coefficients such as \binom{-2}{1}.
[SR: Answers given as \frac{1}{4}(1 - x^2 + \frac{1}{4}x^4) earn M1B1A1.]
[SR: Solutions involving k(1 + \frac{1}{2}x^2)^2, where k = 2, 4 or \frac{1}{2} can earn M1 and A1 for a correct simplified term in x^2 or x^4.]

OR: Differentiate expression and evaluate f(0) and f′(0), where f′(x) = kx(2 + x^2)^{-3} M1
State correct first term \frac{1}{4} B1
Obtain next two terms −\frac{1}{4}x^2 + \frac{1}{16}x^4 A1+A1

[Allow exact decimal equivalents as coefficients.]

[4]

3 Use correct cos 2A formula, or equivalent pair of correct formulas, to obtain an equation in cos \theta M1
Obtain 3-term quadratic 6 \cos^2 \theta + \cos \theta − 5 = 0 , or equivalent A1
Attempt to solve quadratic and reach \theta = \cos^{-1}(a) M1
Obtain answer 33.6° (or 33.5°) or 0.586 (or 0.585) radians A1
Obtain answer 180° or \pi (or 3.14) radians and no others in range A1

[The answer \theta = 180° found by inspection can earn B1.]
[Ignore answers outside the given range.]

[5]
4(i) EITHER

Obtain terms \(\frac{1}{2\sqrt{x}} \) and \(\frac{1}{2\sqrt{y}} \frac{dy}{dx} \), or equivalent \(B1+B1 \)

Obtain answer in any correct form, e.g. \(\frac{dy}{dx} = -\sqrt{\frac{y}{x}} \) \(B1 \)

OR:

Using chain or product rule, differentiate \((\sqrt{a} - \sqrt{x})^2\) \(M1 \)

Obtain derivative in any correct form \(A1 \)

Express \(\frac{dy}{dx} \) in terms of \(x \) and \(y \) only in any correct form \(A1 \)

OR:

Expand \((\sqrt{a} - \sqrt{x})^2\), differentiate and obtain term \(-2 \frac{\sqrt{a}}{2\sqrt{x}} \), or equivalent \(B1 \)

Obtain term 1 by differentiating an expansion of the form \(a + x \pm 2\sqrt{a}\sqrt{x} \) \(B1 \)

Express \(\frac{dy}{dx} \) in terms of \(x \) and \(y \) only in any correct form \(B1 \)

[3]

(ii) State or imply coordinates of \(P \) are \((\frac{1}{2}, \frac{1}{a})\) \(B1 \)

Form equation of the tangent at \(P \) \(M1 \)

Obtain 3 term answer \(x + y = \frac{1}{2}a \) correctly, or equivalent \(A1 \)

[3]

5 (i) Make recognizable sketch of \(y = \sec x \) or \(y = 3 - x^2 \), for \(0 < x < \frac{1}{2}\pi \) \(B1 \)

Sketch the other graph correctly and justify the given statement \(B1 \)

[2]

[Award B1 for a sketch with positive \(y \)-intercept and correct concavity. A correct sketch of \(y = \cos x \) can only earn B1 in the presence of \(1/(3 - x^2) \). Allow a correct single graph and its intersection with \(y = 0 \) to earn full marks.]

(ii) State or imply equation \(\alpha = \cos^{-1}(1/(3 - \alpha^2)) \) or \(\cos \alpha = 1/(3 - \alpha^2) \) \(B1 \)

Rearrange this in the form given in part (i) i.e. \(\sec \alpha = 3 - \alpha^2 \) \(B1 \)

[2]

[Or work vice versa.]

(iii) Use the iterative formula with \(0 \leq x_i \leq \sqrt{2} \) \(M1 \)

Obtain final answer 1.03 \(A1 \)

Show sufficient iterations to justify its accuracy to 2d.p. or show there is a sign change in the interval (1.025, 1.035) \(A1 \)

[3]
6 (i) Use product or quotient rule to find derivative
Obtain derivative in any correct form
Equate derivative to zero and solve a linear equation in \(x \)
Obtain answer \(3 \frac{1}{2} \) only

\[4 \]

(ii) State first step of the form \(\pm \frac{1}{2} (3 - x) e^{-2x} \pm \frac{1}{2} \int e^{-2x} \, dx \), with or without 3
State correct first step e.g. \(-\frac{1}{2} (3 - x) e^{-2x} - \frac{1}{2} \int e^{-2x} \, dx \), or equivalent, with or without 3
Complete the integration correctly obtaining \(-\frac{1}{4} (3 - x) e^{-2x} + \frac{1}{2} e^{-2x} \), or equivalent
Substitute limits \(x = 0 \) and \(x = 3 \) correctly in the complete integral
Obtain answer \(\frac{1}{4} (5 + e^{-6}) \), or exact equivalent (allow \(e^0 \) in place of 1)

\[5 \]

7 (i) EITHER: Attempt multiplication of numerator and denominator by \(3 + 2i \), or equivalent
Simplify denominator to 13 or numerator to \(13 + 26i \)
Obtain answer \(u = 1 + 2i \)

OR: Using correct processes, find the modulus and argument of \(u \)
Obtain modulus \(\sqrt{5} \) (or 2.24) or argument \(\tan^{-1} 2 \) (or 63.4° or 1.11 radians)
Obtain answer \(u = 1 + 2i \)

\[3 \]

(ii) Show the point \(U \) on an Argand diagram in a relatively correct position
Show a circle with centre \(U \)
Show a circle with radius consistent with 2

\[3 \]

[i.f.t. on the value of \(u \).]

(iii) State or imply relevance of the appropriate tangent from \(O \) to the circle
Carry out a complete strategy for finding max arg \(z \)
Obtain final answer 126.9° (2.21 radians)

\[3 \]

[Drawing the appropriate tangent is sufficient for B1.]
[A final answer obtained by measurement earns M1 only.]
8 (i) EITHER: Divide by denominator and obtain a quadratic remainder

Obtain $A = 1$ A1

Use any relevant method to obtain B, C or D M1

Obtain one correct answer A1

Obtain $B = -1$, $C = 2$, $D = 0$ A1

OR: Reduce RHS to a single fraction and identify numerator with that of $f(x)$

Obtain $A = 1$ A1

Use any relevant method to obtain B, C or D M1

Obtain one correct answer A1

Obtain $B = -1$, $C = 2$, $D = 0$ A1

[5]

(ii) Integrate and obtain terms $x - \ln (x - 1)$, or equivalent

Obtain third term $\ln (x^2 + 1)$, or equivalent B1√

Substitute correct limits correctly in the complete integral M1

Obtain given answer following full and exact working A1

[4]

[If $B = 0$ the first B1√ is not available.]

[SR: If A is omitted in part (i), treat as if $A = 0$. Thus only M1M1 and B1√B1√M1 are available.]

9 (i) Separate variables and attempt to integrate $\frac{1}{\sqrt{(P - A)}}$

Obtain term $2\sqrt{(P - A)}$ A1

Obtain term $-kt$ A1

[3]

(ii) Use limits $P = 5\lambda$, $t = 0$ and attempt to find constant c

Obtain $c = 4\sqrt{\lambda}$, or equivalent A1

Use limits $P = 2\lambda$, $t = 2$ and attempt to find k M1

Obtain given answer $k = \sqrt{\lambda}$ correctly A1

[4]

(iii) Substitute $P = \lambda$ and attempt to calculate t

Obtain answer $t = 4$ A1

[2]

(iv) Using answers to part (ii), attempt to rearrange solution to give P in terms of λ and t

Obtain $P = \frac{1}{4}\lambda(4 + (4 - t)^3)$, or equivalent, having squared $\sqrt{\lambda}$ A1

[2]

[For the M1, $\sqrt{(P - A)}$ must be treated correctly.]
10 (i) Express general point of \(l \) or \(m \) in component form e.g. \((1 + 2s, s, −2 + 3s)\) or \((6 + t, −5 − 2t, 4 + t)\) B1
Equate at least two corresponding pairs of components and attempt to solve for \(s \) or \(t \) M1
Obtain \(s = 1 \) or \(t = −3 \) A1
Verify that all three component equations are satisfied A1
Obtain position vector \(3i + j + k \) of intersection point, or equivalent A1

(ii) EITHER: Use scalar product to obtain \(2a + b + 3c = 0 \) and \(a − 2b + c = 0 \) B1
Solve and find one ratio e.g. \(a : b \) M1
State one correct ratio A1
Obtain answer \(a : b : c = 7 : 1 : −5 \), or equivalent A1
Substitute coordinates of a relevant point and values of \(a, b \) and \(c \) in general equation of plane and calculate \(d \) M1
Obtain answer \(7x + y − 5z = 17 \), or equivalent A1

OR: Using two points on \(l \) and one on \(m \) (or vice versa) state three simultaneous equations in \(a, b, c \) and \(d \) e.g. \(3a + b + c = d, \ a − 2c = d \) and \(6a − 5b + 4c = d \) B1
Solve and find one ratio e.g. \(a : b \) M1
State one correct ratio A1
Obtain a ratio of three unknowns e.g. \(a : b : c = 7 : 1 : −5 \), or equivalent A1
Use coordinates of a relevant point and found ratio to find fourth unknown e.g. \(d \) M1
Obtain answer \(7x + y − 5z = 17 \), or equivalent A1

OR: Form a correct 2-parameter equation for the plane,
e.g. \(\mathbf{r} = i − 2k + λ(2i + j + 3k) + μ(i − 2j + k) \) B1
State 3 equations in \(x, y, z, λ \) and \(μ \) M1
State 3 correct equations A1
Eliminate \(λ \) and \(μ \) M1
Obtain equation in any correct unsimplified form A1
Obtain \(7x + y − 5z = 17 \), or equivalent A1

OR: Attempt to calculate vector product of vectors parallel to \(l \) and \(m \) M1
Obtain two correct components of the product A1
Obtain correct product, e.g. \(7i + j − 5z \) A1
State that the plane has equation of the form \(7x + y − 5z = d \) A1
Substitute coordinates of a relevant point and calculate \(d \) M1
Obtain answer \(7x + y − 5z = 17 \), or equivalent A1

[The follow through is on \(3i + j + k \) only.]
1 (i) The force is 320 N
 B1 1

(ii) For using Newton’s second law (3 terms needed)
 \[320 - R = 100 \times 0.5 \]
 Resistance is 270 N
 A1 3

2 (i) Speed is 20 ms\(^{-1}\)
 B1 1

(ii) For using \(s = \frac{1}{2} gt^2 \)
 Time taken is 3 s
 A1 2

(iii) For using \(v^2 = u^2 + 2gs \)
 \(40^2 = 30^2 + 2 \times 10s \)
 Distance fallen is 35 m
 A1 2

3 (i) For using the idea of work as a force times a distance \((25 \times 2 \cos 15^\circ)\)
 M1
 Work done is 48.3 J
 A1 2

(ii) For resolving forces vertically (3 terms needed)
 M1
 \(N + 25 \sin 15^\circ = 3 \times 10 \)
 Component is 23.5 N
 A1 3

4 (i) KE (gain) = \(\frac{1}{2} 0.15 \times 8^2 \)
 B1
 For using PE loss = KE gain
 M1
 Height is 3.2 m
 A1 3

(ii) For using WD is difference in PE loss and KE gain
 M1
 WD = \(0.15 \times 10 \times 4 - \frac{1}{2} 0.15 \times 6^2 \)
 A1
 Work Done is 3.3 J
 A1 3

SR For candidates who treat \(AB \) as if it is straight and vertical (implicitly or otherwise) Max 2 out of 6 marks.

(i) \(s = \frac{8^2}{(2 \times 10)} = 3.2 \)
 B1

(ii) \(a = \frac{6^2}{(2 \times 4)} = 4.5 \) and \(R = 0.15 \times 10 - 0.15 \times 4.5 = 0.825 \) and \(WD = 4 \times 0.825 = 3.3 \)
 B1
5 (i) For applying Newton’s second law to A or to B (3 terms needed) M1

\[T - 0.6 = 0.4a \text{ or } 0.1g - T = 0.1a \]

A1

For a second of the above 2 equations or for
\[0.1g - 0.6 = 0.5a \quad \text{[Can be scored in part (ii)]} \] B1

(Sign of \(a\) must be consistent with that in first equation)

Tension is 0.92 N A1 4

(ii) \(a = 0.8\) B1

For using \(v = at\) M1

Speed = 1.2 ms\(^{-1}\) A1 3

6 (i) \(T_{BM} = T_{AM}\) or \(T_{BM}\cos30^\circ = T_{AM}\cos30^\circ\) B1

For resolving forces at M horizontally \((2T \sin 30^\circ = 5)\)

or for using the sine rule in the triangle of forces

or for using Lami’s theorem \((T \div \sin 60^\circ = 5 \div \sin 60^\circ)\) M1

Tension is 5 N A.G. A1 3

(ii) For resolving forces on B horizontally \((N = T \sin 30^\circ)\) or from symmetry \((N = 5/2)\) or for using Lami’s theorem

\(N \div \sin 150^\circ = 5 \div \sin 90^\circ\) M1

For resolving forces on B vertically (3 terms needed) or for using Lami’s theorem

\[0.2 \times 10 + F = T \cos 30^\circ \quad \text{or} \quad (0.2g + F) \div \sin 120^\circ = T \div \sin 90^\circ \] A1

For using \(F = \mu R\) \((2.33 = 2.5\mu)\) M1

Coefficient is 0.932 A1 5

(iii) \((0.2 + m)g - 2.33 = 5 \cos 30^\circ\) or \(mg = 2(2.33)\) B1 √

\(m = 0.466\) B1 2

7 (i) For using the idea that area represents the distance travelled. M1

For any two of \(\frac{1}{2} \times 100 \times 4.8, \frac{1}{2} \times 200(4.8 + 7.2), \frac{1}{2} \times 200 \times 7.2 \quad (240, 1200, 720)\) A1

Distance is 2160 m A1 3
(ii) For using the idea that the initial acceleration is the gradient of
the first line segment or for using \(v = at \) (4.8 = 100a) or
\(v^2 = 2as \) (4.8\(^2 \) = 2a\times 240) \hspace{1cm} M1

Acceleration is 0.048 ms\(^{-2}\) \hspace{1cm} A1 2

(iii) \(a = 0.06 - 0.00024t \) \hspace{1cm} B1

Acceleration is greater by 0.012 ms\(^{-2}\) \[\sqrt{for 0.06 - ans(ii)}
(must be +ve) and/or wrong coefficient of \(t \) in \(a(t) \)]
[Accept ‘acceleration is 1.25 times greater’] \hspace{1cm} B1 \sqrt{\ } 2

(iv) \(B \)'s velocity is a maximum when 0.06 – 0.00024t = 0 \hspace{1cm} B1 \sqrt{\ }
[\sqrt{wrong coefficient of \(t \) in \(a(t) \)}]

For the method of finding the area representing \(s_a \) (250) \hspace{1cm} M1

\[
240 + \frac{1}{2} (4.8 + 6.6)150 \quad \text{or} \quad 240 + (4.8\times 150 + \frac{1}{2} 0.012\times 150^2) \quad (1095)
\]

\hspace{0.5cm} A1

For using the idea that \(s_B \) is obtained from integration \hspace{1cm} M1
\[0.03t^2 - 0.00004t^3\] \hspace{1cm} A1

Required distance is 155 m \hspace{1cm} A1 \sqrt{\ } 6
(\sqrt{dependent on both M marks})
<table>
<thead>
<tr>
<th>MARK SCHEME</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMUM MARK: 50</td>
</tr>
</tbody>
</table>

SYLLABUS/COMPONENT: 9709/05, 8719/05
MATHEMATICS AND HIGHER MATHEMATICS
Paper 5 (Mechanics 2)
1 For using Newton’s second law with \(a = \frac{v^2}{r} \)
\[F = 50000 \times \frac{25^2}{1250} \]
Magnitude of the force is 25 000 N
\[\text{[3]} \]

2 (i) For stating or implying that the centre of mass is vertically above the lowest point of the cone, and with \(\bar{y} = 5 \)
For using \(\tan \theta = \frac{10}{\bar{y}} \) or equivalent
\(\theta = 63.4^\circ \)
\[\text{[3]} \]

(ii) For using \(F < \mu R \)
\[mg \sin \theta < \mu mg \cos \theta \]
Alternative for the above 2 marks:
For using \(\mu = \tan \phi \) where \(\phi \) is the angle of friction
\(\phi > \theta \) because cone topples without sliding
Coefficient is greater than 2 (ft on \(\tan \theta \) in (i))
N.B. Direct quotation of “topples if \(\mu > \tan \theta \)” (scores B2); \(\mu > 2 \) (B1)
\[\text{[3]} \]

3 (i) \(T = \frac{88 \times 0.1}{0.4} \)
For using Newton’s second law \((22 - 0.2 \times 10 = 0.2a) \)
(3 term equation needed)
Initial acceleration is 100 ms\(^{-2}\)
\[\text{[3]} \]

(ii) For using EPE = \(\frac{2x^2}{2L} \)
\[\left(\frac{88 \times 0.1^2}{2 \times 0.4} \right) \]
Initial elastic energy is 1.1 J
\[\text{[2]} \]

(iii) Change in GPE = 0.2 \times 10 \times 0.1
For using the principle of conservation of energy (KE, EPE and GPE must all be represented)
\[\frac{1}{2} 0.2v^2 = 1.1 - 0.2 \]
Speed is 3 ms\(^{-1}\)
\[\text{[3]} \]
4 (i) e.g. For taking moments about BC

Distance of centre of mass of triangular portion is

$$9.5 + \frac{1}{3} \times 6 \quad (= 11.5)$$

$$8 \times 9.5 \times 4.75 + \frac{1}{2} \times 8 \times 6 \times 11.5 = (8 \times 9.5 + \frac{1}{2} \times 8 \times 6) \overline{x}$$

Distance is 6.37 cm

N.B. Alternative method
e.g. Moments about axis through A perpendicular to AB

Distance of C.O.M. of triangular piece removed is 2

$$\left(8 \times 15.5\right) \times 7.75 - \left(\frac{1}{2} \times 8 \times 6\right) \times 2 = (124 - 20) \overline{x}_1$$

$$(\overline{x}_1 = 9.13)$$ therefore distance is 6.37 cm

[4]

(ii) For taking moments about A

For LHS of $80(15.5 - 6.37) = T \times 15.5 \sin 30^\circ$

For RHS of above equation

Tension is 94.2 N

[4]

(iii) For resolving forces on the lamina vertically

$$(V = 80 - 94.2 \times 0.5)$$ or taking moments about B

$$15.5V = 8 \times 10 \times 6.37$$

Magnitude of vertical component is 32.9 N

[2]
5 (i) For using $\dot{y} = \dot{y}_0 - gt$ with $\dot{y} = 0 \quad (t = 2\sin \alpha)$ M1
For using $y = \dot{y}_0 t - \frac{1}{2} gt^2$ with t as found and $y = 7.2$, or show M1
$t = 1.2$ as in (ii)
Alternatively for using $y_{\text{max}} = \frac{V^2 \sin^2 \alpha}{2g}$ with $y_{\text{max}} = 7.2$ and $V = 20$
or $\dot{y}^2 = \dot{y}_0^2 - 2gy$ with $\dot{y} = 0$ M2

$$7.2 = \frac{400 \sin^2 \alpha}{20}$$ A1

Angle is 36.9° A1

(ii) Speed on hitting the wall is 20×0.8 B1
(use of ball rebounding at 10 ms$^{-1}$ scores B0)
For using $y = y_0 - \frac{1}{2} gt^2$ $(-7.2 = -\frac{1}{2} 10 t^2)$ or M1
$0 = \dot{y} - gt \quad (0 = 12 - 10t)$
$t = 1.2$ A1

Distance is 9.6 m (No ft if rebound velocity = 10 ms$^{-1}$) A1

Alternative – speed on hitting the wall is 20×0.8 B1
Use trajectory equation, with $\theta = 0^\circ$ M1
$-7.2 = x \tan 0^\circ - \frac{gx^2}{2.8^2 \cos^2 0^\circ}$ (allow ft with halving attempt including 10) A1
$x = 9.6 \text{ m}$ A1

(iii) $\dot{y} = \mp 10 \times 1.2$ B1
$\theta = \tan^{-1} \left(\mp \frac{\dot{y}}{x} \right) \quad (x \text{ must have halving attempt. Allow } \dot{x} = 10)$ M1

Required angle is 56.3° A1

[4]
6 (i) For using Newton’s second law

\[120 - 8v - 80 \times 10 \times 0.1 = 80a \]

\[\frac{1}{5-v} \frac{dv}{dt} = \frac{1}{10} \text{ from correct working} \]

M1 A1 A1

[3]

(ii) For separating the variables and attempting to integrate

\[-\ln(5-v) = \frac{1}{10} t + (C)\]

For using \(v(0) = 0\) to find \(C\) (or equivalent by using limits)

\((C = -\ln 5)\)

For converting the equation from logarithmic to exponential form

(allow even if + \(C\) omitted) \((5 \div (5-v) = e^{\frac{t}{10}})\)

\[v = 5(1 - e^{\frac{-t}{10}})\text{ from correct working} \]

M1 A1

[5]

(iii) For using \(v = \frac{dx}{dt}\) and attempting to integrate

\[x = 5(t + 10e^{\frac{-t}{10}}) + (C)\]

For using \(x(0) = 0\) to find \((C) = -50\), then substituting \(t = 20\)

(OR equivalent using limits)

Length is 56.8 m

M1 A1

OR

For using Newton’s second law with \(a = \frac{dv}{dx}\), separating the variables and

attempting to integrate

\[-v - 5\ln(5-v) = \frac{x}{10} + C\]

For using \(v = 0\) when \(x = 0\) to find \(C = -5\ln 5\), then substituting

\(t = 20\) into \(v(t)\)

\((v(20) = 5(1 - e^{-2}) = 4.3233),\)

And finally substituting \(v(20)\) into the above equation

\((x = -50(1 - e^{-2}) + 50 \times 2 = 50 + 50e^{-2})\)

Length is 56.8m

M1 A1

[4]
1

\[x \quad 0 \quad 2 \\
\text{freq} \quad 23 \quad 17 \]

OR

\[P(0) = \frac{23}{40}, \quad P(2) = \frac{17}{40} \]

Mean = \(\frac{34}{40} = 0.850 \)

\[\text{Variance} = \left(\frac{4 \times 17}{40} - (0.85)^2 \right) = 0.978 \] (exact answer 0.9775) (391/400)

M1 For reasonable attempt at the mean using freqs or probs but not using prob=0.5

A1 For correct mean

M1 For correct variance formula

A1\text{ft} For correct answer

| frequencies: 3, 7, 6, 3, 1 |
| scaled frequencies: 3, 7, 3, 1.5, 0.5 |
| or 0.006, 0.014, 0.006, 0.003, 0.001 |

M1 For frequencies and attempt at scaling, accept cw/freq but not cw × freq, not cw/mid point

A1 For correct heights from their scaled frequencies seen on the graph

B1 For correct widths of bars, uniform horiz scale, no halves or gaps or less-than-or-equal tos

B1 For both axes labelled, fd and area or m². Not class width

3

28 - \(\mu = 0.496\sigma \) (accept 0.495 or in between)

35 - \(\mu = 1.282\sigma \) (accept 1.281 or in between, but not 1.28)

\[\sigma = 8.91 \] (accept 8.89 to 8.92 incl)

\[\mu = 23.6 \]

M1 For any equation with \(\mu \) and \(\sigma \) and a reasonable \(z \) value not a prob. Allow cc, \(\sqrt{\sigma} \), \(\sigma^2 \), or – and give M1 A0A1\text{ft} for these four cases

A1 A1 For 2 correct equations

M1 For solving their two equations by elim 1 variable sensibly

A1 For correct answer

A1 For correct answer

4

(i) \((0.95)^2 = 0.774 \)

(ii) \((0.95)^2 \times (0.05)^1 \times 3C_1 \)

\[= 0.204 \]

(iii) \((0.95)^2 \times (0.05) \)

\[= 0.0451(361/8000) \]

M1 For 0.95 seen, can be implied

A1 For correct final answer

M1 For any binomial calculation with 3 terms, powers summing to 5

A1 For correct answer

M1 For no Ps, no Cs, and only 3 terms of type \(p^2(1-p) \)

A1 For correct answer
Mark Scheme

Syllabus Paper

AICE AND A AND AS LEVEL – NOVEMBER 2003

1. **5**
 - **Diagram:**
 - M
 - C
 - F
 - NC
 - **Expression:**
 \[
 P(M|C) = \frac{0.54 \times 0.05}{0.54 \times 0.05 + 0.46 \times 0.02}
 \]
 \[= 0.746 \ (135/181)\]
 - **Award:**
 - M1
 - A1

2. **6 (a) (i) 18564**
 - \(C_5\) or \(6/18\) × (i) or \(18\) \(C_6\) – \(17\) \(C_6\)
 - **Answer:**
 \[= 6188\]
 - **Award:**
 - B1
 - A1

 (b) (i) 40320
 - \(5! \times 3! \times 4\) \(C_1\)
 - **Answer:**
 \[= 2880\]
 - **Award:**
 - B1
 - A1

3. **7 (i) \(z = \pm 1.143\)**
 - \(P(7.8<T<11) = \Phi(1.143) - 0.5\)
 - **Answer:**
 \[= 0.8735 - 0.5\]
 \[= 0.3735 \ (accept \ ans \ rounded \ to \ 0.37 \ to \ 0.374)\]
 - **Award:**
 - M1
 - A1

 (ii) \((0.1265)^2 \times (0.8735) \times 3\) \(C_2\)
 - **Answer:**
 \[= 0.0419\]
 - **Award:**
 - M1

 (iii) Not symmetric so not normal
 - Does not agree with the hospital’s figures
 - **Award:**
 - B1

4. **8 (i) 18c = 1**
 - \(c = 1/18 = 0.0556\)
 - **Award:**
 - M1
 - A1

 (ii) \(E(X) = 2.78 \ (25/9) = 50c\)
 - \(\text{Var} \ (X) = 1.17 \ (95/81) = 160c - 2500c^2\)
 - **Award:**
 - M1
 - A1

 (iii) \(P(X > 2.78) = 11c\)
 - **Answer:**
 \[= 0.611 \ (11/18)\]
 - **Award:**
 - M1
 - A1
November 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/07, 8719/07

MATHEMATICS AND HIGHER MATHEMATICS
Paper 7 (Probability and Statistics 2)
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 1 | $1.9 \times 1.96 < 1$
 \[n > 13.9 (13.87)\]
 $n = 14$ | M1 | For equality or inequality involving width or equivalent and term in $1/\sqrt{n}$ and a z-value
 A1 | For correct inequality
 M1 | For solving a relevant equation
 A1 | For correct answer cwo |
| 2 | $\lambda = 4.5$
 $P(X = 2, 3, 4) = e^{-4.5} \left(\frac{4.5^2}{2!} + \frac{4.5^3}{3!} + \frac{4.5^4}{4!} \right)$
 $= 0.471$ | M1 | For using Poisson approximation any mean
 B1 | For correct mean used
 M1 | For calculating $P(2, 3, 4)$ their mean
 A1 | For correct numerical expression |
| 3 | $SU \sim N(19,12)$
 $P(T - SU > 0)$ or $P(T - S > 5) = 1 - \Phi \left(\frac{0 - 1}{\sqrt{21}} \right)$
 $= \Phi(0.2182)$
 $= 0.586$ | B1 | For correct mean and variance. Can be implied if using $P(T-S>5)$ in next part
 M1 | For consideration of $P(T - SU > 0)$
 M1 | For summing their two variances
 M1 | For normalising and finding correct area from their values
 A1 | For correct answer |
| 4 | (i) $\lambda = \frac{20}{80} = 0.25$
 $P(X \geq 3) = 1 - P(X \leq 2)$
 $= 1 - e^{-0.25} (1 + 0.25 + \frac{0.25^2}{2})$
 $= 0.00216$ | B1 | For $\lambda = 0.25$
 M1 | For calculating a relevant Poisson $\operatorname{prob}(\text{any } \lambda)$
 M1 | For calculating expression for $P(\lambda \geq 3)$ their λ
 A1 | For correct answer |
| | (ii) $\frac{-k}{e^{80}} = 0.9$
 $\frac{k}{80} = -0.10536$
 $k = 8.43$ | M1 | For using $\lambda = -t/80$ in an expression for $P(0)$
 M1 | For equating their expression to 0.9
 M1 | For solving the associated equation
 A1 | For correct answer cwo |
| 5 | (i) $P(\bar{X} > 1800) = 1 - \Phi \left(\frac{1800 - 1850}{117/\sqrt{26}} \right)$
 $= \Phi(2.179)$
 $= 0.985$ | B1 | For $117/\sqrt{26}$ (or equiv)
 M1 | For standardising and use of tables
 A1 | For correct answer cwo |
Mark Scheme

A AND AS LEVEL – NOVEMBER 2003

<table>
<thead>
<tr>
<th>Question</th>
<th>Mark Scheme</th>
<th>Syllabus</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (i) (a) Rejecting H_0 when it is true</td>
<td>B1</td>
<td>9709/8719</td>
<td>7</td>
</tr>
<tr>
<td>(b) Accepting H_0 when it is false</td>
<td>B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) (a) $P(\text{NNNNN})$ under $H_0 = (0.94)^5$</td>
<td>M1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$= 0.7339$</td>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(\text{Type I error}) = 1 - 0.7339$</td>
<td>A1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$= 0.266$</td>
<td>A1ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) $P(\text{NNNNN})$ under $H_1 = (0.7)^5$</td>
<td>M1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$= 0.168$</td>
<td>M1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(\text{Type II error}) = 0.168$</td>
<td>A1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 (i) \[\int_0^\infty ke^{-3x} \, dx = 1 \]

\[
0 - \frac{-k}{3} = 1 \Rightarrow k = 3
\]

<table>
<thead>
<tr>
<th>Question</th>
<th>Mark Scheme</th>
<th>Syllabus</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ii) $\int_0^{0.1} 3e^{-3x} , dx = 0.25$</td>
<td>M1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| \[
\left[-e^{-3x} \right]_0^{0.1} = 0.25
\]
| \[
-e^{-3\times0.1} + 1 = 0.25
\]
| \[
0.75 = e^{3q_1}
\]
| \[
q_1 = 0.0959
\] | A1 | | |

© University of Cambridge Local Examinations Syndicate 2003
(iii) Mean = \[\int_{0}^{\infty} 3xe^{-3x} \, dx \]

\[= \left[xe^{-3x} \right]_{0}^{\infty} - \int_{0}^{\infty} e^{-3x} \, dx \]

\[= \left[\frac{e^{-3x}}{-3} \right]_{0}^{\infty} \]

\[= 0.333 \text{ or } \frac{1}{3} \]

<table>
<thead>
<tr>
<th>Mark Scheme</th>
<th>Syllabus</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>[6]</td>
<td>B1</td>
<td>A1</td>
</tr>
<tr>
<td>A1</td>
<td>M1</td>
<td>A1</td>
</tr>
<tr>
<td>For correct statement for mean</td>
<td>For attempting to integrate $3xe^{-3x}$ (no limits needed)</td>
<td>A1</td>
</tr>
<tr>
<td>For $-xe^{-3x}$ or $-xe^{-3x}/3$</td>
<td>For attempt $\int e^{-3x} , dx$ (their integral)</td>
<td>A1</td>
</tr>
<tr>
<td>For $0+$</td>
<td>For $\left[\frac{e^{-3x}}{-3} \right]_{0}^{\infty}$</td>
<td>A1</td>
</tr>
<tr>
<td>For correct answer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>