CAMBRIDGE INTERNATIONAL EXAMINATIONS
Cambridge International Advanced Level

CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

MATHEMATICS
9709/33
Paper 3 Pure Mathematics 3 (P3)
May/June 2017
1 hour 45 minutes

Candidates answer on the Question Paper.

Additional Materials: List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all the questions.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
The use of an electronic calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 75.

This document consists of 19 printed pages and 1 blank page.
Prove the identity \(\frac{\cot x - \tan x}{\cot x + \tan x} \equiv \cos 2x \).
2 Expand \((3 + 2x)^{-3}\) in ascending powers of \(x\) up to and including the term in \(x^2\), simplifying the coefficients. \[4\]
Using the substitution \(u = e^x \), solve the equation \(4e^{-x} = 3e^x + 4 \). Give your answer correct to 3 significant figures.
Find the exact value of $\int_{0}^{\frac{\pi}{2}} \theta \sin \frac{1}{2} \theta \, d\theta$. [4]
A curve has equation \(y = \frac{2}{3} \ln(1 + 3 \cos^2 x) \) for \(0 \leq x \leq \frac{1}{2} \pi \).

(i) Express \(\frac{dy}{dx} \) in terms of \(\tan x \). [4]
(ii) Hence find the x-coordinate of the point on the curve where the gradient is -1. Give your answer correct to 3 significant figures. [2]
6 The equation \(\cot x = 1 - x \) has one root in the interval \(0 < x < \pi \), denoted by \(\alpha \).

(i) Show by calculation that \(\alpha \) is greater than 2.5. [2]

(ii) Show that, if a sequence of values in the interval \(0 < x < \pi \) given by the iterative formula

\[
x_{n+1} = \pi + \tan^{-1}\left(\frac{1}{1-x_n} \right)
\]

converges, then it converges to \(\alpha \). [2]
(iii) Use this iterative formula to determine \(\alpha \) correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]
The diagram shows a sketch of the curve $y = \frac{e^{\frac{1}{x}}}{x}$ for $x > 0$, and its minimum point M.

(i) Find the x-coordinate of M.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
(ii) Use the trapezium rule with two intervals to estimate the value of
\[
\int_{1}^{3} \frac{e^{\frac{x}{x}}}{x} \, dx,
\]
giving your answer correct to 2 decimal places. [3]

(iii) The estimate found in part (ii) is denoted by \(E \). Explain, without further calculation, whether another estimate found using the trapezium rule with four intervals would be greater than \(E \) or less than \(E \). [1]
In a certain chemical reaction, a compound A is formed from a compound B. The masses of A and B at time t after the start of the reaction are x and y respectively and the sum of the masses is equal to 50 throughout the reaction. At any time the rate of increase of the mass of A is proportional to the mass of B at that time.

(i) Explain why $\frac{dx}{dt} = k(50 - x)$, where k is a constant. [1]

(ii) Solve the differential equation in part (i) and express x in terms of t. [8]

It is given that $x = 0$ when $t = 0$, and $x = 25$ when $t = 10$.
Let \(f(x) = \frac{3x^2 - 4}{x^2(3x + 2)} \).

(i) Express \(f(x) \) in partial fractions. [5]
(ii) Hence show that \(\int_{1}^{2} f(x) \, dx = \ln\left(\frac{25}{8}\right) - 1. \) [5]
The points A and B have position vectors given by $\overrightarrow{OA} = i - 2j + 2k$ and $\overrightarrow{OB} = 3i + j + k$. The line l has equation $r = 2i + j + mk + \mu(i - 2j - 4k)$, where m is a constant.

(i) Given that the line l intersects the line passing through A and B, find the value of m. [5]
(ii) Find the equation of the plane which is parallel to \(\mathbf{i} - 2\mathbf{j} - 4\mathbf{k} \) and contains the points \(A \) and \(B \). Give your answer in the form \(ax + by + cz = d \). [5]
11 Throughout this question the use of a calculator is not permitted.

(a) The complex numbers \(z \) and \(w \) satisfy the equations

\[
\begin{align*}
z + (1 + i)w &= i \\
(1 - i)z + iw &= 1.
\end{align*}
\]

Solve the equations for \(z \) and \(w \), giving your answers in the form \(x + iy \), where \(x \) and \(y \) are real.

[6]
(b) The complex numbers u and v are given by $u = 1 + (2\sqrt{3})i$ and $v = 3 + 2i$. In an Argand diagram, u and v are represented by the points A and B. A third point C lies in the first quadrant and is such that $BC = 2AB$ and angle $ABC = 90^\circ$. Find the complex number z represented by C, giving your answer in the form $x + iy$, where x and y are real and exact. [4]