Cambridge International Examinations
Cambridge International Advanced Level

MATHMATICS

Paper 3 Pure Mathematics 3 (P3)

Additional Materials: Answer Booklet/Paper
Graph Paper
List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.
Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all the questions.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in
degrees, unless a different level of accuracy is specified in the question.
The use of an electronic calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 75.
Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger
numbers of marks later in the paper.

This document consists of 3 printed pages and 1 blank page.
1. Use the trapezium rule with three intervals to estimate the value of
\[\int_{0}^{\pi} \ln(1 + \sin x) \, dx, \]
giving your answer correct to 2 decimal places. \[3\]

2. Using the substitution \(u = 4^x \), solve the equation \(4^x + 4^2 = 4^{x+2} \), giving your answer correct to 3 significant figures. \[4\]

3. A curve has equation \(y = \cos x \cos 2x \). Find the \(x \)-coordinate of the stationary point on the curve in the interval \(0 < x < \frac{\pi}{2} \), giving your answer correct to 3 significant figures. \[6\]

4. (i) Express \(3 \sin \theta + 2 \cos \theta \) in the form \(R \sin(\theta + \alpha) \), where \(R > 0 \) and \(0^\circ < \alpha < 90^\circ \), stating the exact value of \(R \) and giving the value of \(\alpha \) correct to 2 decimal places. \[3\]

(ii) Hence solve the equation
\[3 \sin \theta + 2 \cos \theta = 1, \]
for \(0^\circ < \theta < 180^\circ \). \[3\]

5. The diagram shows a circle with centre \(O \) and radius \(r \). The tangents to the circle at the points \(A \) and \(B \) meet at \(T \), and the angle \(AOB \) is \(2x \) radians. The shaded region is bounded by the tangents \(AT \) and \(BT \), and by the minor arc \(AB \). The perimeter of the shaded region is equal to the circumference of the circle.

(i) Show that \(x \) satisfies the equation
\[\tan x = \pi - x. \]
\[3\]

(ii) This equation has one root in the interval \(0 < x < \frac{\pi}{2} \). Verify by calculation that this root lies between 1 and 1.3. \[2\]

(iii) Use the iterative formula
\[x_{n+1} = \tan^{-1}(\pi - x_n) \]
to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. \[3\]
6 Let \(I = \int_{0}^{1} \frac{\sqrt{x}}{2 - \sqrt{x}} \, dx \).

(i) Using the substitution \(u = 2 - \sqrt{x}, \) show that \(I = \int_{1}^{2} \frac{(2 - u)^2}{u} \, du. \) [4]

(ii) Hence show that \(I = 8 \ln 2 - 5. \) [4]

7 The complex number \(u \) is given by \(u = -1 + (4\sqrt{3})i. \)

(i) Without using a calculator and showing all your working, find the two square roots of \(u. \) Give your answers in the form \(a + ib, \) where the real numbers \(a \) and \(b \) are exact. [5]

(ii) On an Argand diagram, sketch the locus of points representing complex numbers \(z \) satisfying the relation \(|z - u| = 1. \) Determine the greatest value of \(\arg z \) for points on this locus. [4]

8 Let \(f(x) = \frac{5x^2 + x + 6}{(3 - 2x)(x^2 + 4)}. \)

(i) Express \(f(x) \) in partial fractions. [5]

(ii) Hence obtain the expansion of \(f(x) \) in ascending powers of \(x, \) up to and including the term in \(x^2. \) [5]

9 The number of organisms in a population at time \(t \) is denoted by \(x. \) Treating \(x \) as a continuous variable, the differential equation satisfied by \(x \) and \(t \) is

\[\frac{dx}{dt} = \frac{xe^{-t}}{k + e^{-t}}, \]

where \(k \) is a positive constant.

(i) Given that \(x = 10 \) when \(t = 0, \) solve the differential equation, obtaining a relation between \(x, k \) and \(t. \) [6]

(ii) Given also that \(x = 20 \) when \(t = 1, \) show that \(k = 1 - \frac{2}{e}. \) [2]

(iii) Show that the number of organisms never reaches 48, however large \(t \) becomes. [2]

10 The points \(A \) and \(B \) have position vectors given by \(\overrightarrow{OA} = 2i - j + 3k \) and \(\overrightarrow{OB} = i + j + 5k. \) The line \(l \) has equation \(\mathbf{r} = i + j + 2k + \mu(3i + j - k). \)

(i) Show that \(l \) does not intersect the line passing through \(A \) and \(B. \) [5]

(ii) Find the equation of the plane containing the line \(l \) and the point \(A. \) Give your answer in the form \(ax + by + cz = d. \) [6]