This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.
Mark Scheme Notes

Marks are of the following three types:

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

• When a part of a question has two or more “method” steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

• The symbol \checkmark implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously “correct” answers or results obtained from incorrect working.

• Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

• Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

• For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.
The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO Correct Answer Only (emphasising that no “follow through” from a previous error is allowed)
CWO Correct Working Only – often written by a ‘fortuitous’ answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become “follow through √” marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.
1. \[[WD = 500 \times 2.75 \times 40]\]
 Work done = 55000 J
 \[\text{Power} = \frac{55000}{40} = 1375 \text{ W}\]
 or \[\text{Power} = 500 \times 2.75 = 1375 \text{ W}\]
 For using WD = Fs or for using WD = Pt
 For using Power = \(\frac{\Delta WD}{\Delta t}\) or for using \(P = Fv\)

2 (i)
 After B reaches the floor, A continues at constant speed until it reaches the pulley (no tension and the surface is smooth). Thus A’s speed when B reaches the floor is the same as A’s speed (3 ms\(^{-1}\)) when it reaches the pulley. Until the instant when B reached the floor, A and B have the same speed and hence B reaches the floor with speed 3 ms\(^{-1}\).

(ii) Loss of PE = 0.15gh
 Gain of KE = \[\frac{1}{2} (0.35 + 0.15) \times 3^2\]
 1.5h = 0.25 \times 9
 \[h = 1.5\]
 For using loss of PE = gain of KE

Alternative Method for part (ii)
(ii) \[0.15g - T = 0.15a \text{ and } T = 0.35a\]
 or \[0.15g = (0.35 + 0.15)a\]
 \(a = \ldots\)
 \[a = 3\text{ms}^{-2}\]
 \[3^2 = 0 + 2 \times 3h\]
 \[h = 1.5\]
 For applying Newton’s second law to A and to B or for using \(mg = (m_A + m_B)a\) to find \(a\)
 For using \(v^2 = u^2 + 2as\)
Alternative Method for part (ii)

<table>
<thead>
<tr>
<th>(ii)</th>
<th>[0.15g - T = 0.15a \text{ and } T = 0.35a]</th>
<th>M1</th>
<th>For applying Newton’s second law to (A) and to (B) to find (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T = 1.05N)</td>
<td>A1</td>
<td>For using PE(_B) loss – KE(_B) gain = WD against (T) or for using KE(_A) gain = WD by (T)</td>
</tr>
</tbody>
</table>
| | \[
\left[0.15gh - \frac{1}{2} \times 0.15 \times 3^2 = 1.05h \right] \\
\text{or} \quad \left[\frac{1}{2} \times 0.35 \times 3^2 = 1.05h \right] \\
\]
| | \(h = 1.5\) | A1 | |

3

<table>
<thead>
<tr>
<th></th>
<th>(\frac{P}{4.5} - R = 860 \times 4)</th>
<th>A1</th>
<th>For using (DF = \frac{P}{v}) and for applying Newton’s 2(^{nd}) law at one or both points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\frac{P}{22.5} - R = 860 \times 0.3)</td>
<td>A1</td>
<td>For eliminating (R) to find (P) or for eliminating (P) to find (R)</td>
</tr>
</tbody>
</table>
| | \[
\frac{P}{4.5} - \frac{P}{22.5} = 860(4 - 0.3) \\
P = 17900 \\
\text{or} \quad -4.5R + 22.5R = 860(4 \times 4.5 - 0.3 \times 22.5) \\
R = 537.5
\]
| | \(R = 537.5\) | B1 | 6 Accept 538 |

4

<table>
<thead>
<tr>
<th></th>
<th>KE loss = (\frac{1}{2} \times 12000(24^2 - 16^2))</th>
<th>B1</th>
<th>For using WD by DF = PE gain – KE loss + WD against resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PE gain = 12000(g \times 25)</td>
<td>B1</td>
<td></td>
</tr>
</tbody>
</table>

© Cambridge International Examinations 2015
WD by DF
\[WD = 3000000 - 1920000 + 7500 \times 500 \]
A1

Driving force = \(4830000 \div 500\)
Driving force is 9660 N
A1 6

For using DF = WD by DF \(\div 500\)

Alternative Method for 4

\[16^2 = 24^2 + 2 \times 500a\]

\[a = - 0.32 \text{ ms}^2\]

A1

Weight component down hill = 12000g \(\times 25 \div 500\)
B1

DF – 7500 – 12000g \(\times \frac{25}{500}\)
= 12000 \(\times (-0.32)\)
A1

Driving force is 9660 N
A1 6

For using \(v^2 = u^2 + 2as\)

5 (i)

\[x\text{-component} = 4 + 8 \cos 30^\circ + 12 \cos 60^\circ\]

\[= 10 + 4\sqrt{3}\]

B1

\[y\text{-component} = 8 \sin 30^\circ + 12 \sin 60^\circ + 16\]

\[= 20 + 6\sqrt{3}\]

M1

\[R = 34.8 \text{ or } \theta = 60.9^\circ \text{ with the 4N force}\]

A1

\[\theta = 60.9^\circ \text{ with the 4N force or } R = 34.8\]

B1 5

For using \(R^2 = X^2 + Y^2\) or \(\tan \theta = Y \div X\)

5 (ii)

\[R = 34.8\]

B1\(^\wedge\)

\[\theta = 29.1^\circ \text{ with the 16N force}\]

B1\(^\wedge\) 2

ft \(R\) from (i)

ft \(90 - \theta\) from (i)
6 (i)
\[20 + 5gsin10^\circ - F = 0\]
\[R = 5gcos10^\circ\]
\[[\mu = (20 + 8.6824)/49.24]\]
Coefficient of friction is 0.582
M1
A1
For resolving forces down the plane
B1
For using \(\mu = F \div R\)
A1
5

(ii)
\[5gsin10^\circ - 0.582 \times 49.24 = 5a\]
\[0 = 2.5^2 - 2 \times 4s\]
Distance is 0.781 m
M1
A1
For using Newton’s 2nd law
\(\mu = F \div R\) from (i) (\(\mu > 0\))
A1
\(\sqrt{\text{ft}}\)
For using \(v^2 = u^2 + 2as\)
A1
4

Alternative Method for part (ii)

(ii)
PE loss = 5gdsin10°
\[\frac{1}{2} \times 5 \times 2.5^2 + 5gsin10^\circ = 0.582 \times 5gdcos10^\circ\]
Distance is 0.781 m
M1
A1
For using KE loss + PE loss = WD against friction
B1
ft \(\mu\) (\(\mu > 0\))
A1
4

7 (i)
\[0.0001(t - 50)(t - 100) = 0\]
or \(v(0) = 0, v(50) = 0, v(100) = 0\)
\(v(t) = 0\) when \(t = 0, 50, 100\)
M1
A1
Either factorise \(v(t)\) and solve \(v(t) = 0\)
or evaluate \(v(0), v(50)\) and \(v(100)\)
2

(ii)
\[0.0003t^2 - 0.03t + 0.5 = 0\]
\[t^2 - 100t + 1667 = 0\]
\(t = \left[\frac{1}{2}\left(100 \pm \sqrt{(100^2 - 4 \times 1667)}\right)\right]\)
\[\text{M1}\]
For using \(\frac{dv}{dt}\)
For solving \(a(t) = 0\)
dM1
\(a = 0 \) when \(t = 21.1 \) and when \(t = 78.9 \)

\(v(21.1) = 4.81 \)

\(v(78.9) = -4.81 \)

Convex curve from \((0,0)\) to \((50,0)\) with \(v > 0 \) and has a maximum point.

The curve for \((50,0)\) to \((100,0)\) is exactly the same as the first curve positioned by rotating the first curve through 180° about the point \((50,0)\).

(iii)

\[s(t) = 0.000025t^4 - 0.005t^3 + 0.25t^2 + c \]

\[[156.25 - 625 + 625] \]

Greatest distance is 156 m

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>B1</th>
<th>M1</th>
<th>A1</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = 0 when (t = 21.1) and when (t = 78.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v(21.1) = 4.81)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v(78.9) = -4.81)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convex curve from ((0,0)) to ((50,0)) with (v > 0) and has a maximum point.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The curve for ((50,0)) to ((100,0)) is exactly the same as the first curve positioned by rotating the first curve through 180° about the point ((50,0)).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[s(t) = 0.000025t^4 - 0.005t^3 + 0.25t^2 + c]</td>
<td>M1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[[156.25 - 625 + 625]]</td>
<td>M1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greatest distance is 156 m</td>
<td>A1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>