This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.
Mark Scheme Notes

Marks are of the following three types:

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more “method” steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

- The symbol \checkmark implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously “correct” answers or results obtained from incorrect working.

- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.
The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that
 the detailed working leading to the result is valid)
BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely
 clear)
CAO Correct Answer Only (emphasising that no “follow through” from a previous error
 is allowed)
CWO Correct Working Only – often written by a “fortuitous” answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently
 accurate)
SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a
 case where some standard marking practice is to be varied in the light of a
 particular circumstance)

Penalties

MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or
part question are genuinely misread and the object and difficulty of the question
remain unaltered. In this case all A and B marks then become “follow through $\sqrt{\cdot}$
marks. MR is not applied when the candidate misreads his own figures – this is
regarded as an error in accuracy. An MR–2 penalty may be applied in particular
cases if agreed at the coordination meeting.

PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1
penalty is usually discussed at the meeting.
1 (i) State or imply equation $(3x+4)^2 = (3x-11)^2$ or $3x + 4 = -(3x-11)$ B1
 Attempt solution of ‘quadratic’ equation or linear equation M1
 Obtain $x = \frac{7}{6}$ or equivalent (and no other solutions) A1 [3]
 (ii) Use logarithms to solve equation of form 2^y = their answer to (i) (must be +ve) M1
 Obtain 0.222 (and no other solutions) A1 [2]

2 State or imply that $\ln y = \ln A + p(x-1)$ B1
 Equate gradient to p or obtain two equations for $\ln A$ and p M1
 Obtain $p = 0.44$ A1
 Substitute values correctly, to find value of $\ln A$ DM1
 Alternative:
 Obtain an equation either $e^{1.6} = Ae^p$ or $e^{2.92} = Ae^{4p}$ M1
 Obtain both equations correctly A1
 Solve to obtain $p = 0.44$ A1
 Substitute value correctly to find A DM1

3 Differentiate to obtain form $p \cos x + q \sin 2x$ or equivalent M1
 Obtain correct $6 \cos x + 4 \sin 2x$ or equivalent A1
 Substitute $\frac{1}{6} \pi$ to obtain derivative equal to $5\sqrt{3}$ or 8.66 A1
 Form equation of tangent (not normal) using numerical value of gradient obtained by differentiation M1

4 (i) Substitute $x = -2$ in $f(x)$ and equate to zero to obtain $-8 + 4a + b = 0$ or equiv B1
 Substitute $x = -1$ in $g(x)$ and equate to -18 M1
 Obtain $-1 + b - a = -18$ or equivalent A1
 Solve a pair of linear equations for a or b DM1
 Obtain $a = 5$, $b = -12$ A1 [5]
 (ii) Simplify $g(x) - f(x)$ to obtain form $kx^2 + c$ where $k < 0$ M1
 Obtain $-17x^2 + 7$ and state 7, following their value of c A1 √ [2]
5 (i) Obtain integral of form \(\frac{1}{2} e^{\frac{1}{2}x} + mx \)
Obtain correct \(6e^{\frac{1}{2}x} + x \)
Apply limits and obtain correct \(6e^{\frac{1}{2}a} + a - 6 \)
Equate to 10 and introduce natural logarithm correctly
Obtain given answer \(a = 2 \ln \left(\frac{16 - a}{6} \right) \) correctly

(ii) Use the iterative formula correctly at least once
Obtain final answer 1.732
Show sufficient iterations to justify accuracy to 3 d.p. or show sign change in interval (1.7315, 1.7325)

6 (i) State or imply \(\csc 2\theta = \frac{1}{\sin 2\theta} \)
Express left-hand side in terms of \(\sin \theta \) and \(\cos \theta \)
Obtain given answer \(\sec^2 \theta \) correctly

(ii) (a) State or imply \(\cos \theta = \frac{1}{\sqrt{5}} \) or \(\tan \frac{\theta}{2} = 2 \) at least
Obtain 1.11 or awrt 1.11, allow 0.353\pi
Obtain 2.03 or awrt 2.03, allow 0.648\pi and no other values between 0 and \(\pi \)

(b) State integrand as \(\sec^2 2x \)
Integrate to obtain expression of form \(k \tan mx \)
Obtain correct \(\frac{1}{2} \tan 2x \)
Obtain \(\frac{1}{2} \sqrt{3} \) or exact equivalent

7 (i) Obtain \(3y^2 \frac{dy}{dx} \) as derivative of \(y^3 \)
Obtain \(4y + 4x \frac{dy}{dx} \) as derivative of \(4xy \)
Equate derivative of left-hand side to zero and solve for \(\frac{dy}{dx} \), must be from implicit differentiation
Confirm given answer \(\frac{dy}{dx} = -\frac{4y}{3y^2 + 4x} \) correctly

(ii) State or imply \(y = 0 \)
Substitute in equation of curve and show contradiction

(iii) State or imply \(3y^2 + 4x = 0 \)
Eliminate one variable from equation of curve using \(3y^2 + 4x = 0 \)
Obtain \(y = -2 \)
Obtain \(x = -3 \)