CAMBRIDGE INTERNATIONAL EXAMINATIONS
GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/63 Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.
Mark Scheme Notes

Marks are of the following three types:

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more “method” steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

- The symbol \(\checkmark \) implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously “correct” answers or results obtained from incorrect working.

- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking \(g \) equal to 9.8 or 9.81 instead of 10.
The following abbreviations may be used in a mark scheme or used on the scripts:

- **AEF** Any Equivalent Form (of answer is equally acceptable)
- **AG** Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- **BOD** Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- **CAO** Correct Answer Only (emphasising that no “follow through” from a previous error is allowed)
- **CWO** Correct Working Only – often written by a ‘fortuitous’ answer
- **ISW** Ignore Subsequent Working
- **MR** Misread
- **PA** Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- **SOS** See Other Solution (the candidate makes a better attempt at the same question)
- **SR** Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- **MR –1** A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become “follow through” marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- **PA –1** This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.
1 (i)

<table>
<thead>
<tr>
<th>Adults</th>
<th>Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 3</td>
<td>5 4</td>
</tr>
<tr>
<td>8 6 5 4 3</td>
<td>1 2 7 8</td>
</tr>
<tr>
<td>7 4 3 3 2 1</td>
<td>2 7</td>
</tr>
<tr>
<td>8 4 3 1</td>
<td>1 3 4 6 9</td>
</tr>
<tr>
<td>9</td>
<td>2 5</td>
</tr>
</tbody>
</table>

key 3 │ 5 │ 4 represents 53 seconds for adults and 54 seconds for children

B1 Single stem and key correct – including adults, children and seconds

B1 Right hand leaves correct shape

B1 3 Left hand leaves correct shape

(ii) Two from:
Children’s estimates more spread out
Adults estimates lower
Adults are symmetrical whereas children are skewed

B1 oe

B1 oe

2 (i)

\[np = 252 \times 1/7 = 36, \]

\[npq = 252 \times 1/7 \times 6/7 = 30.857 \]

\[P \left(z < \frac{29.5 - 36}{\sqrt{30.857}} \right) + P \left(z > \frac{44.5 - 36}{\sqrt{30.857}} \right) \]

= \[P (z < -1.170) + P(z > 1.530) \]

= \[1 - 0.8790 + 1 - 0.9370 \]

= \[0.184 \]

M1 any standardising, sq rt needed
M1 any continuity correction either 29.5, 30.5, 43.5, 44.5

M1 correct area \(2 - (\Phi_1 + \Phi_2) \)

A1 5 correct answer

(ii) \(np \) and \(nq \) are both > 5

B1 1 must have both

3 (i) \(P(2) = \binom{6}{3}C_3^3/C_5^3 \)

OR \(\binom{6}{3}C_3^3 + \binom{6}{3}C_2^3C_1^1 + \binom{6}{3}C_2^3C_1^1 + \binom{6}{3}C_1^3C_3^3 \)

OR \(3/9 \times 2/8 \times 6/7 \times 5/6 \times 4/5 \times 2/7C_2 = 10/21 \)

= 60/126 AG

M1 Using combinations \(aC_b \times cC_d^eC_f \)

M1 Mult 5 probs with a \(bC_q \)
If \(3C_3 \) replace by 10, oe must be justified

A1 2 Legit method, as answer given

(ii)

<table>
<thead>
<tr>
<th>(x)</th>
<th>0 1 2 3</th>
<th>Prob</th>
<th>2/42 15/42 20/42 5/42</th>
</tr>
</thead>
</table>

\(P(0) = \binom{6}{3}C_3^3/C_5^3 = 6/126 \)

\(P(1) = \binom{6}{3}C_3^3/C_3^3 = 45/126 \)

\(P(3) = \binom{6}{3}C_2^3C_3^3/C_5^3 = 15/126 \)

B1 0, 1, 2, 3 only seen in table.
Condone \(x = 4,5 \) in table if \(P(x) = 0 \) or blank and values in table for \(x = 0,1,2,3 \)

B1 Any correct prob other than \(P(2) \)

B1 Any other correct prob

B1 4 \(\Sigma P(x) = 1, 3 < n(x) < 6 \)
<table>
<thead>
<tr>
<th>Question</th>
<th>Marking Scheme</th>
<th>Syllabus</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (i)</td>
<td>new mean $\frac{172.6 \times 28 - 161.8}{27} = 173$</td>
<td>M1 2</td>
<td>Mult by 28, sub 161.8 and dividing by 27 or 28 Correct ans</td>
</tr>
<tr>
<td></td>
<td>$28, \text{sub} 161.8 \text{ and dividing by } 27$ or 28</td>
<td>A1</td>
<td>Correct ans</td>
</tr>
<tr>
<td>(ii)</td>
<td>original $\Sigma x^2 = (4.58^2 + 172.6^2) \times 28$</td>
<td>M1</td>
<td>Subst in formula to find Σx^2 and attempt to make Σx^2 subject, with 2 terms both squared Correct answer</td>
</tr>
<tr>
<td></td>
<td>$= 834728.6 \ (835000)$</td>
<td>A1</td>
<td>Correct answer</td>
</tr>
<tr>
<td></td>
<td>Remaining $\Sigma x^2 = 834728.6 - 161.8^2$</td>
<td>M1</td>
<td>Subtract 161.82 from their original Σx^2</td>
</tr>
<tr>
<td></td>
<td>$= 808549.36$</td>
<td>M1</td>
<td>Correct ans, accept 4.15 or 3.93</td>
</tr>
<tr>
<td></td>
<td>$\text{sd of remaining } = \sqrt{\frac{808549.36}{27} - 173^2}$</td>
<td>A1 4</td>
<td>Correct ans, accept 4.15 or 3.93</td>
</tr>
<tr>
<td>5 (i)</td>
<td>$z = -1.282$</td>
<td>B1</td>
<td>Rounding to ± 1.28 seen</td>
</tr>
<tr>
<td></td>
<td>$-1.282 = \frac{t - 6.5}{1.76}$</td>
<td>M1</td>
<td>Standardising, no cc, no sq or sq rt, $z \neq \pm 0.9, \pm 0.1$</td>
</tr>
<tr>
<td></td>
<td>$t = 4.24$</td>
<td>A1 3</td>
<td>Correct answer, accept 4.25</td>
</tr>
<tr>
<td>(ii)</td>
<td>$P(z < 1) = 0.8413$</td>
<td>M1</td>
<td>$z = 1$ used to find a probability</td>
</tr>
<tr>
<td></td>
<td>$P(\text{within 1sd of mean}) = 2\Phi - 1$</td>
<td>B1</td>
<td>correct prob, accept answer rounding to 0.66, 0.67, 0.68, not from wrong working. If quoted, then implies first M1.</td>
</tr>
<tr>
<td></td>
<td>$P(8, 9) = \binom{9}{8} \times (0.6826)^8 \times (0.3174)^1 + (0.6826)^9$</td>
<td>M1</td>
<td>Binomial term $p^r (1-p)^{9-r} \binom{9}{r}$, $\binom{9}{r}$ must be seen</td>
</tr>
<tr>
<td></td>
<td>$= 0.167$</td>
<td>M1</td>
<td>Binomial expression for $P(8) + P(9)$, any p</td>
</tr>
<tr>
<td></td>
<td>$P(T_2 \mid T) = \frac{P(T_2 \cap T)}{P(T)}$</td>
<td>A1 5</td>
<td>Correct ans</td>
</tr>
<tr>
<td>6 (i)</td>
<td>$P(B \text{ champ}) = 0.7 \times 0.7 = 0.49$</td>
<td>B1 1</td>
<td></td>
</tr>
<tr>
<td>(ii)</td>
<td>$P(B \text{ champ})$</td>
<td>M1</td>
<td>Summing at least 2 options, at least one of which is 3-factor</td>
</tr>
<tr>
<td></td>
<td>$= P(WW) + P(WLW) + P(LWW)$</td>
<td>M1</td>
<td>Summing at least 2 options, at least one of which is 3-factor</td>
</tr>
<tr>
<td></td>
<td>$= (0.7 \times 0.7) + (0.7 \times 0.3 \times 0.7) + (0.3 \times 0.7 \times 0.7)$</td>
<td>B1</td>
<td>0.147 seen, unsimplified</td>
</tr>
<tr>
<td></td>
<td>$= 0.49 + 0.147 + 0.147$</td>
<td>A1 3</td>
<td>Correct answer</td>
</tr>
<tr>
<td></td>
<td>$= 0.784$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii)</td>
<td>$P(T_2 \mid T) = \frac{P(T_2 \cap T)}{P(T)}$</td>
<td>M1</td>
<td>Attempt $P(T_2 \cap T)$ seen anywhere sum of 2 terms</td>
</tr>
<tr>
<td></td>
<td>$= \frac{0.3 \times 0.3 + 0.7 \times 0.3 \times 0.3}{0.216}$</td>
<td>A1</td>
<td>Correct unsimplified num of a fraction</td>
</tr>
<tr>
<td></td>
<td>$= 0.708$</td>
<td>M1</td>
<td>Dividing by their $(1 - (ii)^\sqrt{)}$ oe</td>
</tr>
<tr>
<td></td>
<td>$= 0.708$</td>
<td>A1 4</td>
<td>Correct answer</td>
</tr>
</tbody>
</table>

© Cambridge International Examinations 2014
Question 7

(i) (a)

\[6! \times (\times) 4! \text{ OR } 4 \times 3 \]
\[\div 2!2!3! \text{ OR } \div 2!3! \]

Total 720 ways

- **M1**
- **M1**
- **M1**
- **A1**
- **4** Correct ans

Mark Scheme:
- Seen in a single term expression as numerator
- Seen in a single term expression as numerator (denominator may be 1)
- Seen in a single term expression as denominator

(i) (b)

\[1\text{****}3 = \frac{7!}{3!2!} = 420 \]
\[3\text{****}1 = 420 \]
\[3\text{****}3 = 420 \]

Total = 1260 ways

- **B1**
- **M1**
- **A1**
- **3** Correct ans

Mark Scheme:
- Attempting to evaluate and sum at least 2 of 1***3, 3***1, 3***3

(ii) (a)

\[5 \times 4 \times 3 = 60 \text{ ways} \left(^5P_3 \right) \]

- **M1**
- **A1**
- **2** Correct ans

Mark Scheme:
- \(^5P_3\) or \(^5C_3 \times 3!\) (can be implied)

(ii) (b)

2** in
- 212, 213, 214, 216,
- 221, 223, 224, 226,
- 231, 232, 233, 234, 236,
- 241, 242, 243, 246,
- 261, 262, 263, 264, 266

Total = 22 ways

- **M1**
- **A1**
- **2** Correct ans

Alternative Methods:
\[3 \times ^4C_1 + 2 \times ^5C_1 \]

OR
\[^3P_2 + ^2C_1 \]

OR
\[^4P_2 + 2 \times ^4P_1 + ^2C_1 \]

OR
\[^5P_2 \text{ seen} \]

OR
\[p \times ^4C_1 + q \times ^5C_1, \text{ oe } p + q > 2 \]

OR
\[\text{Any 2 terms added} \]