1 Solve the equation $|x - 2| = \frac{1}{3}x$. \[3\]

2 The sequence of values given by the iterative formula

$$x_{n+1} = \frac{x_n(x_n^3 + 100)}{2(x_n^3 + 25)},$$

with initial value $x_1 = 3.5$, converges to α.

(i) Use this formula to calculate α correct to 4 decimal places, showing the result of each iteration to 6 decimal places. \[3\]

(ii) State an equation satisfied by α and hence find the exact value of α. \[2\]

3 The variables x and y satisfy the equation $y = Ae^{-kx^2}$, where A and k are constants. The graph of $\ln y$ against x^2 is a straight line passing through the points (0.64, 0.76) and (1.69, 0.32), as shown in the diagram. Find the values of A and k correct to 2 decimal places. \[5\]

4 The polynomial $ax^3 - 20x^2 + x + 3$, where a is a constant, is denoted by $p(x)$. It is given that $(3x + 1)$ is a factor of $p(x)$.

(i) Find the value of a. \[3\]

(ii) When a has this value, factorise $p(x)$ completely. \[3\]

5 The diagram shows the curve with equation

$$x^3 + xy^2 + ay^2 - 3ax^2 = 0,$$

where a is a positive constant. The maximum point on the curve is M. Find the x-coordinate of M in terms of a. \[6\]
6 (i) By differentiating \(\frac{1}{\cos x} \), show that the derivative of \(\sec x \) is \(\sec x \tan x \). Hence show that if \(y = \ln(\sec x + \tan x) \) then \(\frac{dy}{dx} = \sec x \). \[4\]

(ii) Using the substitution \(x = (\sqrt{3}) \tan \theta \), find the exact value of
\[
\int_{1}^{3} \frac{1}{\sqrt{3 + x^2}} \, dx,
\]
expressing your answer as a single logarithm. \[4\]

7 (i) By first expanding \(\cos(x + 45^\circ) \), express \(\cos(x + 45^\circ) - (\sqrt{2}) \sin x \) in the form \(R \cos(x + \alpha) \), where \(R > 0 \) and \(0^\circ < \alpha < 90^\circ \). Give the value of \(R \) correct to 4 significant figures and the value of \(\alpha \) correct to 2 decimal places. \[5\]

(ii) Hence solve the equation
\[
\cos(x + 45^\circ) - (\sqrt{2}) \sin x = 2,
\]
for \(0^\circ < x < 360^\circ \). \[4\]

8 (i) Express \(\frac{1}{x^2(2x + 1)} \) in the form \(\frac{A}{x^2} + \frac{B}{x} + \frac{C}{2x + 1} \). \[4\]

(ii) The variables \(x \) and \(y \) satisfy the differential equation
\[
y = x^2(2x + 1) \frac{dy}{dx},
\]
and \(y = 1 \) when \(x = 1 \). Solve the differential equation and find the exact value of \(y \) when \(x = 2 \). Give your value of \(y \) in a form not involving logarithms. \[7\]

9 (a) The complex number \(w \) is such that \(\text{Re} w > 0 \) and \(w + 3w^* = iw^2 \), where \(w^* \) denotes the complex conjugate of \(w \). Find \(w \), giving your answer in the form \(x + iy \), where \(x \) and \(y \) are real. \[5\]

(b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers \(z \) which satisfy both the inequalities \(|z - 2i| \leq 2 \) and \(0 \leq \arg(z + 2) \leq \frac{1}{4}\pi \). Calculate the greatest value of \(|z| \) for points in this region, giving your answer correct to 2 decimal places. \[6\]

10 The points \(A \) and \(B \) have position vectors \(2i - 3j + 2k \) and \(5i - 2j + k \) respectively. The plane \(p \) has equation \(x + y = 5 \).

(i) Find the position vector of the point of intersection of the line through \(A \) and \(B \) and the plane \(p \). \[4\]

(ii) A second plane \(q \) has an equation of the form \(x + by + cz = d \), where \(b \), \(c \) and \(d \) are constants. The plane \(q \) contains the line \(AB \), and the acute angle between the planes \(p \) and \(q \) is \(60^\circ \). Find the equation of \(q \). \[7\]