MARK SCHEME for the May/June 2010 question paper
for the guidance of teachers

9709 MATHEMATICS

9709/21 Paper 21, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.
Mark Scheme Notes

Marks are of the following three types:

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

• When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

• The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

• Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

• Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

• For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking \(g \) equal to 9.8 or 9.81 instead of 10.
The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a ‘fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become “follow through √” marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.
1 EITHER: State or imply non-modular inequality \((2x - 3)^2 > 5^2\), or corresponding equation

or pair of linear equations

Obtain critical values \(-1\) and \(4\)

State correct answer \(x < -1, x > 4\)

OR: State one critical value, e.g. \(x = 4\), having solved a linear equation (or inequality)

or from a graphical method or by inspection

State the other critical value correctly

State correct answer \(x < -1, x > 4\) [3]

2 Obtain integral \(\ln(x + 2)\)

Substitute correct limits correctly

Use law for the logarithm of a product, a quotient or a power

Obtain given answer following full and correct working

3 (i) Use \(\tan(A \pm B)\) formula to obtain an equation in \(\tan x\)

Use \(\tan 45^\circ = 1\) and obtain a correct equation in any form

Obtain the given equation correctly [3]

(ii) Solve the given quadratic in \(\tan x\) and evaluate an inverse tangent

Obtain second answer, e.g. \(26.6^\circ\), and no others in the given interval

[Treat the giving of answers in radians as a misread. Ignore answers outside the given interval.]

4 (i) Commence division by \(x^2 + x - 1\) obtaining quotient of the form \(x + k\)

Obtain quotient \(x + 2\)

Obtain remainder \(3x + 4\)

Identify the quotient and remainder correctly [4]

(ii) Substitute \(x = -1\) and evaluate expression

Obtain answer 0 [2]

5 (i) State or imply \(2^x = \frac{1}{y}\), or \(2^{-x} = y^{-1}\)

Substitute and obtain a 3-term quadratic in \(y\)

Obtain the given answer correctly [3]

(ii) Solve the given quadratic and carry out correct method for solving an equation of the form

\(2^x = a\), where \(a > 0\)

Obtain answer \(x = 1.58\) or 1.585 [3]

Obtain answer \(x = 0\) [3]
6 (i) State \(2xy + x^2 \frac{dy}{dx}\) as derivative of \(x^2y\)
B1

State \(2y \frac{dy}{dx}\) as derivative of \(y^2\)
B1

Equate derivatives of LHS and RHS, and solve for \(\frac{dy}{dx}\)
M1

Obtain given answer \[4\]
A1

(ii) Substitute and obtain gradient \(\frac{5}{7}\), or equivalent
B1

Form equation of tangent at the given point (1, 2)
M1

Obtain answer \(2x - 5y + 8 = 0\), or equivalent
A1 \[3\]

[The M1 is dependent on at least one of the B marks being obtained.]

7 (i) Make a recognisable sketch of a relevant graph, e.g. \(y = 2 - x\)
B1

Sketch an appropriate second graph, e.g. \(y = e^{2x}\), and justify the given statement
B1 \[2\]

(ii) Consider sign of \(e^{2x} - (2 - x)\) at \(x = 0\) and \(x = 0.5\), or equivalent
M1

Complete the argument correctly with correct calculations
A1 \[2\]

(iii) Show that \(e^{2x} = 2 - x\) is equivalent to \(x = \frac{1}{2} \ln(2 - x)\), or vice versa
B1 \[1\]

(iv) Use the iterative formula correctly at least once
M1

Obtain final answer 0.27
A1

Show sufficient iterations to justify its accuracy to 2 d.p., or show there is a sign change in the interval (0.265, 0.275)
A1 \[3\]

8 (i) Use quotient rule
M1

Obtain correct derivative in any form
A1

Obtain given result correctly
A1 \[3\]

(ii) State \(\cot^2 x = -1 + \csc^2 x\), or equivalent
B1

Obtain integral \(-x - \cot x\) (f.t. on signs in the identity)
B1\[\sqrt{\circ}\]

Substitute correct limits correctly
M1

Obtain given answer
A1 \[4\]

(iii) Use trig formulae to convert integrand to \(\frac{1}{k \sin^2 x}\) where \(k = \pm 2\), or \(\pm 1\)
M1

Obtain given answer \(\frac{1}{2} \cos \csc^2 x\) correctly
A1

Obtain answer \(-\frac{1}{2} \cot x + c\), or equivalent
B1 \[3\]