MARK SCHEME for the May/June 2009 question paper
for the guidance of teachers

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.
Mark Scheme Notes

Marks are of the following three types:

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

• When a part of a question has two or more “method” steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

• The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously “correct” answers or results obtained from incorrect working.

• Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

• Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

• For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.
The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally acceptable)

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no “follow through” from a previous error is allowed)

CWO Correct Working Only – often written by a ‘fortuitous’ answer

ISW Ignore Subsequent Working

MR Misread

PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become “follow through √” marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.
1 Tension is 40 N
 \[R + T = W \]
 Force exerted is 10 N
 \(A1 \)
 For resolving forces on B vertically

2 Work done is 3000 J
 \[3000 = F \times 100 \cos 15^\circ \]
 \(F = 31.1 \) N
 \(A1 \)
 For using \(WD = F d \cos \alpha \)

3 (i) \[X = 7 + 10 \cos 50^\circ - 15 \cos 80^\circ, \]
 \[Y = 10 \sin 50^\circ + 15 \sin 80^\circ \]
 (a) x-component is 10.8 N
 (b) y-component is 22.4 N
 \(A1 \)
 For obtaining an expression for X or Y

(ii) \[\theta = \tan^{-1}\left(\frac{22.4}{10.8}\right) \]
 Direction 64.2° anticlockwise from x-axis
 \(A1 \)
 Accept 64.3°

4 (i) \[F + T = 8 \times 10 \sin 20^\circ \]
 Frictional component is 14.4 N
 \(A1 \)
 For resolving forces parallel to the plane

 Normal component is 75.2 N
 \(A1 \)
 For resolving forces normal to the plane

 \(M1 \)
 For attempting to solve for F or R

 \(A1 \)
 For consistent sin/cos exchange – method marks as above and

 \(A1 \) (only) for \(F = 62.2 \) and \(R = 27.4 \)

 Alternative scheme for part (i)

 \[T \cos 20^\circ + F \cos 20^\circ = R \sin 20^\circ \]
 \(\tan 20^\circ = \frac{(13 \cos 20^\circ + F \cos 20^\circ)}{(80 - 13 \sin 20^\circ - F \sin 20^\circ)} \rightarrow \]
 \(F = 80 \sin 20^\circ - 13 \) or

 \[R \sin 20^\circ - 13 \cos 20^\circ) \rightarrow R = 80 \cos 20^\circ \]
 \(A1 \)
 For attempting to solve for F or R

(ii) \(F = 8 \times 10 \sin 20^\circ \) or \(\mu = \tan 20^\circ \)
 \(B1 \)
 Coefficient is 0.364 (accept 0.36)

5 (i) Gain in KE is 3240 J
 Loss in PE is 9070 J
 \(B1 \)
 \(B1 \)

 Work done is 5830 J
 \(B1 \)
 \(B1 \)
 SR (max 1 out of 2)
 for answers –3240 and –9070
 B1
 ft WD = loss of PE – gain in KE (subject to
 loss of PE ≠ gain in KE)

(ii) \(R = 5830/250 \) (= 23.3)
 \[23.3d = \frac{1}{2} 80(9^2 - 5^2) \]
 or
 \[-23.3 = 80a \text{ and } 5^2 = 9^2 + 2(-23.3/80)d \]
 \(d = 96.0 \)
 \(A1 \)
 For using WD = Loss of KE or for using
 \(-R = 80a \text{ and } v^2 = u^2 + 2as \)
 Accept 96 or 96.1;
 \(A1 \)
 ft 560000/WD(i) or 2240/R

(iii) Driving force = 425/5
 \[[DF – 23.3 = 80a] \]
 \(B1 \)
 Acceleration is 0.771 ms\(^{-2}\)
 \(A1 \)
 For using Newton’s second law
Question 6

(i) \[0.36 = \frac{1}{2}a(0.6)^2\]
 - **M1** For using \(s = (ut) + \frac{1}{2}at^2 \)
 - **A1** \[2\]

(ii) \[0.45g - T = 0.45 \times 2\]
 - **M1** For applying Newton’s second law to \(A \)
 - **A1 ft** \[2\]
 - \(T = 0.45(10 - a) \)

(iii) \[T - mg = 2m\] or \[0.9 + 2m = 4.5 - 10m\]
 - **M1** For applying Newton’s second law to \(B \) or for using \((M + m)a = (M - m)g\)
 - **A1 ft** \[2\]
 - \(a \) and/or a non-zero value of \(T \)
 - \((2 + g)m = 3.6 \) (must have \(m \) terms combined)
 - \(\text{Mass is 0.3 kg} \)

(iv) \[u = 1.2\]
 - **B1 ft** \(u = 0.6a \)
 - **M1** \[0 = 1.44 - 20s \rightarrow 0.072\]
 - **A1 ft** \[3\]
 - \(\text{Maximum height is 0.792} \)

Question 7

(i) \[a = 0.5 - 0.02t\]
 - **B1**
 - \[0.5 - 0.02t = 0.1\]
 - **M1** \[3\]
 - **A1** \[3\]
 - \(\text{Time taken is 20 s} \)

(ii) \[u = 0.5 \times 20 - 0.01 \times 20^2 \] (\(= 6\))
 - **B1 ft** \[14 = 6 + 0.1t\]
 - **M1** \[3\] \(t = 10(14 - 0.5t_1 + 0.01t_1^2) \)
 - **A1 ft** \[3\]
 - \(\text{Time taken is 80 s} \)

(iii) \[v^2 = 14^2 - 2 \times 0.3 \times 300\]
 - **M1** \[2\]
 - **A1** \[2\]
 - \(\text{Speed is 4 ms}^{-1} \)

(iv) \[s = 0.25t^2 - 0.01t^3/3 \] (+ \(C \))
 - **M1** \[A1\]
 - **DM1** \[\text{For using limits 0 to 20 or equivalent}\]
 - \(\text{Distance } AD \text{ is 1170 m} \)

\[AB = 0.25 \times 20^2 - 0.01 \times 20^3/3 \] (\(= 73.3\))
- **A1 ft** \[\text{ft } 0.25t_1^2 - 0.01t_1^3/3\]

\[BC = \frac{1}{2} (6 + 14) \times 80 \text{ or } 6 \times 80 + \frac{1}{2} \times 0.1 \times 80^2 \] (\(= 800\))
- **B1**

\[\text{or } (14^2 - 6^2)/(2 \times 0.1) \] (\(= 800\))