1 The length of time, \(t \) minutes, taken to do the crossword in a certain newspaper was observed on 12 occasions. The results are summarised below.

\[
\Sigma (t - 35) = -15 \quad \Sigma (t - 35)^2 = 82.23
\]

Calculate the mean and standard deviation of these times taken to do the crossword. \[4\]

2 Jamie is equally likely to attend or not to attend a training session before a football match. If he attends, he is certain to be chosen for the team which plays in the match. If he does not attend, there is a probability of 0.6 that he is chosen for the team.

(i) Find the probability that Jamie is chosen for the team. \[3\]

(ii) Find the conditional probability that Jamie attended the training session, given that he was chosen for the team. \[3\]

3 (a) The random variable \(X \) is normally distributed. The mean is twice the standard deviation. It is given that \(P(X > 5.2) = 0.9 \). Find the standard deviation. \[4\]

(b) A normal distribution has mean \(\mu \) and standard deviation \(\sigma \). If 800 observations are taken from this distribution, how many would you expect to be between \(\mu - \sigma \) and \(\mu + \sigma \)? \[3\]

4 The lengths of time in minutes to swim a certain distance by the members of a class of twelve 9-year-olds and by the members of a class of eight 16-year-olds are shown below.

9-year-olds: 13.0 16.1 16.0 14.4 15.9 15.1 14.2 13.7 16.7 16.4 15.0 13.2

16-year-olds: 14.8 13.0 11.4 11.7 16.5 13.7 12.8 12.9

(i) Draw a back-to-back stem-and-leaf diagram to represent the information above. \[4\]

(ii) A new pupil joined the 16-year-old class and swam the distance. The mean time for the class of nine pupils was now 13.6 minutes. Find the new pupil’s time to swim the distance. \[3\]

5 (i) Find the number of ways in which all twelve letters of the word REFRIGERATOR can be arranged

(a) if there are no restrictions, \[2\]

(b) if the Rs must all be together. \[2\]

(ii) How many different selections of four letters from the twelve letters of the word REFRIGERATOR contain no Rs and two Es? \[3\]

6 The probability that New Year’s Day is on a Saturday in a randomly chosen year is \(\frac{1}{7} \).

(i) 15 years are chosen randomly. Find the probability that at least 3 of these years have New Year’s Day on a Saturday. \[4\]

(ii) 56 years are chosen randomly. Use a suitable approximation to find the probability that more than 7 of these years have New Year’s Day on a Saturday. \[5\]
A vegetable basket contains 12 peppers, of which 3 are red, 4 are green and 5 are yellow. Three peppers are taken, at random and without replacement, from the basket.

(i) Find the probability that the three peppers are all different colours. [3]

(ii) Show that the probability that exactly 2 of the peppers taken are green is \(\frac{12}{55} \). [2]

(iii) The number of green peppers taken is denoted by the discrete random variable \(X \). Draw up a probability distribution table for \(X \). [5]