MARK SCHEME for the June 2005 question paper

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.
Grade thresholds taken for Syllabus 9709 (Mathematics) in the June 2005 examination.

<table>
<thead>
<tr>
<th>Component</th>
<th>maximum mark available</th>
<th>minimum mark required for grade:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Component 2</td>
<td>50</td>
<td>38</td>
</tr>
</tbody>
</table>

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.
Mark Scheme Notes

Marks are of the following three types:

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

• When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

• The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

• Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

 The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

• Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

• For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.
The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only – often written by a ‘fortuitous’ answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.
1 EITHER State or imply non-modular inequality \(x^2 > (3x - 2)^2 \), or corresponding equation
 Expand and make reasonable solution attempt at 2- or 3-term quadratic, or equivalent
 Obtain critical values \(\frac{1}{2} \) and 1
 State correct answer \(\frac{1}{2} < x < 1 \)
OR State one correct linear equation for a critical value
 State two equations separately
 State correct answer \(\frac{1}{2} < x < 1 \)
OR State one critical value from a graphical method or inspection or by solving a linear inequality
 State the other critical value correctly
 State correct answer \(\frac{1}{2} < x < 1 \)

2 (a) Obtain a linear equation, e.g. \(x \log 3 = \log 8 \)
 Obtain final answer 1.89
(b) Use \(2 \ln y = \ln(y^2) \)
 Use law for addition or subtraction of logarithms
 Obtain answer \(z = \frac{y + 2}{y^2} \)

3 (i) Use the given iterative formula correctly at least once
 Obtain final answer \(\alpha = 1.68 \)
 Show sufficient iterations to justify the answer to 2 dp
(ii) State equation, e.g. \(x = \frac{3}{4} x + \frac{2}{x^3} \), in any correct form
 Derive the exact answer \(\alpha \) (or \(x \)) = \(\frac{5}{8} \), or equivalent

4 (i) Substitute \(x = -1 \) and equate to zero obtaining e.g. \((-1)^3 - (-1)^2 + a(-1) + b = 0 \)
 Substitute \(x = 2 \) and equate to 12
 Obtain a correct 3-term equation
 Solve a relevant pair of equations for \(a \) or \(b \)
 Obtain \(a = 2 \) and \(b = 4 \)
(ii) Attempt division by \(x + 1 \) reaching a partial quotient of \(x^2 + kx \), or similar stage by inspection
 Obtain quadratic factor \(x^2 - 2x = 4 \)
 [Ignore failure to repeat that \(x + 1 \) is a factor]

5 (i) Differentiate using chain or quotient rule
 Obtain derivative in any correct form
 Obtain given answer correctly
(ii) State \(dx = \sec^2 \theta \), or equivalent
 Use \(\frac{dy}{dx} = \frac{dy}{d\theta} \cdot \frac{dx}{d\theta} \)
 Obtain given answer correctly
(iii) State that \(\theta = \frac{\pi}{6} \)

Obtain \(x \)-coordinate \(1 + \frac{1}{\sqrt{3}} \), or equivalent

Obtain \(y \)-coordinate \(\frac{2}{\sqrt{3}} \), or equivalent

\[\text{B1} \]

6
(i) State coordinates \((1, 0)\)

\[\text{B1 1} \]

(ii) Use quotient or product rule

Obtain correct derivative, e.g. \(\frac{-\ln x}{x^2} + \frac{1}{x^2} \)

Equate derivative to zero and solve for \(x \)

Obtain \(x = e \)

Obtain \(y = \frac{1}{e} \)

\[\text{A1 5} \]

(iii) Show or imply correct coordinates \(0, 0.34657\ldots, 0.36620\ldots, 0.34657\ldots \)

Use correct formula, or equivalent, with \(h = 1 \) and four ordinates

Obtain answer 0.89 with no errors seen

\[\text{A1 3} \]

(iv) Justify statement that the rule gives an under-estimate

\[\text{B1 1} \]

7
(i) Make relevant use of the \(\sin(A + B) \) formula

Make relevant use of \(\sin 2A \) and \(\cos 2A \) formulae

Obtain a correct expression in terms of \(\sin x \) and \(\cos x \)

Use \(\cos^2 x = 1 - \sin^2 x \) to obtain an expression in terms of \(\sin x \)

Obtain given answer correctly

\[\text{B1 5} \]

(ii) Replace integrand by \(\frac{3}{4} \sin x - \frac{1}{4} \sin 3x \), or equivalent

Integrate, obtaining \(-\frac{3}{4} \cos x + \frac{1}{12} \cos 3x \), or equivalent

Use limits correctly

Obtain given answer correctly

\[\text{A1 5} \]