READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
The use of an electronic calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 75.
1 Use the trapezium rule with three intervals to estimate the value of
\[\int_{0}^{\frac{\pi}{2}} \sqrt{1 - \tan x} \, dx,\]
giving your answer correct to 3 decimal places. [3]
2 Expand $\frac{1}{3}(1 - 4x)$ in ascending powers of x, up to and including the term in x^3, simplifying the coefficients. [4]
Using the expansions of \(\cos(3x + x) \) and \(\cos(3x - x) \), show that

\[
\frac{1}{2}(\cos 4x + \cos 2x) = \cos 3x \cos x. \quad [3]
\]
(ii) Hence show that \[\int_{-\frac{1}{6}\pi}^{\frac{1}{6}\pi} \cos 3x \cos 2x \, dx = \frac{3\sqrt{3}}{8}. \]
The variables x and y satisfy the equation $y^n = Ax^3$, where n and A are constants. It is given that $y = 2.58$ when $x = 1.20$, and $y = 9.49$ when $x = 2.51$.

(i) Explain why the graph of $\ln y$ against $\ln x$ is a straight line. \[2\]

(ii) Find the values of n and A, giving your answers correct to 2 decimal places. \[4\]
5 The parametric equations of a curve are
\[x = 2t + \sin 2t, \quad y = 1 - 2 \cos 2t, \]
for \(-\frac{1}{2}\pi < t < \frac{1}{2}\pi\).

(i) Show that \(\frac{dy}{dx} = 2 \tan t \). [5]
(ii) Hence find the x-coordinate of the point on the curve at which the gradient of the normal is 2. Give your answer correct to 3 significant figures. [2]
6 The variables x and θ satisfy the differential equation

$$x \cos^2 \theta \frac{dx}{d\theta} = 2 \tan \theta + 1,$$

for $0 \leq \theta < \frac{\pi}{2}$ and $x > 0$. It is given that $x = 1$ when $\theta = \frac{\pi}{4}$.

(i) Show that $\frac{d}{d\theta} (\tan^2 \theta) = \frac{2 \tan \theta}{\cos^2 \theta}$. \[1\]

(ii) Solve the differential equation and calculate the value of x when $\theta = \frac{\pi}{3}$, giving your answer correct to 3 significant figures. \[7\]
(i) By sketching suitable graphs, show that the equation $e^{2x} = 6 + e^{-x}$ has exactly one real root. [2]

(ii) Verify by calculation that this root lies between 0.5 and 1. [2]
(iii) Show that if a sequence of values given by the iterative formula
\[x_{n+1} = \frac{1}{3} \ln(1 + 6e^{x_n}) \]
converges, then it converges to the root of the equation in part (i). [2]

(iv) Use this iterative formula to calculate the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]
Let \(f(x) = \frac{5x^2 + x + 27}{(2x + 1)(x^2 + 9)} \).

(i) Express \(f(x) \) in partial fractions. [5]
(ii) Hence find \(\int_{0}^{4} f(x) \, dx \), giving your answer in the form \(\ln c \), where \(c \) is an integer.
The complex number \(1 + 2i\) is denoted by \(u\).

(i) It is given that \(u\) is a root of the equation \(2x^3 - x^2 + 4x + k = 0\), where \(k\) is a constant.

(a) Showing all working and without using a calculator, find the value of \(k\). \[3\]

(b) Showing all working and without using a calculator, find the other two roots of this equation. \[4\]
(ii) On an Argand diagram sketch the locus of points representing complex numbers z satisfying the equation $|z - u| = 1$. Determine the least value of $\arg z$ for points on this locus. Give your answer in radians correct to 2 decimal places. [4]
The line \(l \) has equation \(r = 4i + 3j - k + \mu(i + 2j - 2k) \). The plane \(p \) has equation \(2x - 3y - z = 4 \).

(i) Find the position vector of the point of intersection of \(l \) and \(p \). [3]

(ii) Find the acute angle between \(l \) and \(p \). [3]
(iii) A second plane q is parallel to l, perpendicular to p and contains the point with position vector $4j - k$. Find the equation of q, giving your answer in the form $ax + by + cz = d$. [5]