A curve passes through the point (4, -6) and has an equation for which \(\frac{dy}{dx} = x^2 - 3 \). Find the equation of the curve. [4]
(i) Find the coefficients of \(x^2 \) and \(x^3 \) in the expansion of \((1 - 2x)^7\). \([3]\)

(ii) Hence find the coefficient of \(x^3 \) in the expansion of \((2 + 5x)(1 - 2x)^7\). \([2]\)
3 On a certain day, the height of a young bamboo plant was found to be 40 cm. After exactly one day its height was found to be 41.2 cm. Two different models are used to predict its height exactly 60 days after it was first measured.

- Model A assumes that the daily amount of growth continues to be constant at the amount found for the first day.
- Model B assumes that the daily percentage rate of growth continues to be constant at the percentage rate of growth found for the first day.

(i) Using model A, find the predicted height in cm of the bamboo plant exactly 60 days after it was first measured. [2]

..
..
..
..
..
..
..
..
..
..
..
..
..
..

(ii) Using model B, find the predicted height in cm of the bamboo plant exactly 60 days after it was first measured. [3]

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
A straight line cuts the positive \(x \)-axis at \(A \) and the positive \(y \)-axis at \(B \) \((0, 2)\). Angle \(BAO = \frac{1}{6} \pi \) radians, where \(O \) is the origin.

\(\text{(i) Find the exact value of the } x \text{-coordinate of } A. \) \[2\]

\(\text{(ii) Find the equation of the perpendicular bisector of } AB, \text{ giving your answer in the form } y = mx + c, \) where \(m \) is given exactly and \(c \) is an integer. \[4\]
(a) Express the equation \(\frac{5 + 2 \tan x}{3 + 2 \tan x} = 1 + \tan x \) as a quadratic equation in \(\tan x \) and hence solve the equation for \(0 \leq x \leq \pi \). [4]
The diagram shows part of the graph of \(y = k \sin(\theta + \alpha) \), where \(k \) and \(\alpha \) are constants and \(0^\circ < \alpha < 180^\circ \). Find the value of \(\alpha \) and the value of \(k \). [2]
The diagram shows a sector POQ of a circle of radius 10 cm and centre O. Angle POQ is 2.2 radians. QR is an arc of a circle with centre P and POR is a straight line.

(i) Show that the length of PQ is 17.8 cm, correct to 3 significant figures. [2]
(ii) Find the perimeter of the shaded region. [4]
Fig. 1 shows a rectangle with sides of 7 units and 3 units from which a triangular corner has been removed, leaving a 5-sided polygon $OABCD$. The sides OA, AB, BC and DO have lengths of 7 units, 3 units, 3 units and 2 units respectively. Fig. 2 shows the polygon $OABCD$ forming the horizontal base of a pyramid in which the point E is 8 units vertically above D. Unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to OA, OD and DE respectively.

(i) Find \overrightarrow{CE} and the length of CE. \[3\]
(ii) Use a scalar product to find angle ECA, giving your answer in the form $\cos^{-1}\left(\frac{m}{\sqrt{n}}\right)$, where m and n are integers. [5]
A curve has equation \(y = \frac{1}{2}x^2 - 4x^3 + 8x \).

(i) Find the \(x \)-coordinates of the stationary points. \[5\]
(ii) Find \(\frac{d^2y}{dx^2} \). [1]

(iii) Find, showing all necessary working, the nature of each stationary point. [2]
A curve has equation \(y = \frac{1}{x} + c \) and a line has equation \(y = cx - 3 \), where \(c \) is a constant.

(i) Find the set of values of \(c \) for which the curve and the line meet. [4]
(ii) The line is a tangent to the curve for two particular values of c. For each of these values find the x-coordinate of the point at which the tangent touches the curve. [4]
Functions f and g are defined by

$$f(x) = \frac{8}{x-2} + 2 \text{ for } x > 2,$$

$$g(x) = \frac{8}{x-2} + 2 \text{ for } 2 < x < 4.$$

(i) (a) State the range of the function f. \[1\]

(ii) Explain why the function gf cannot be formed. \[1\]
(iii) Find the set of values of x satisfying the inequality $6f'(x) + 2f^{-1}(x) - 5 < 0$. [6]
(i) Show that AB is the tangent to the curve at A. [4]
(ii) Show that the area of the shaded region can be expressed as \(\int_{0}^{\frac{1}{2}} (1 - 2x)^{3} \, dx \). [2]

(iii) Hence, showing all necessary working, find the area of the shaded region. [3]