1 Solve the equation \(\ln(x^2 + 4) = 2 \ln x + \ln 4 \), giving your answer in an exact form. \[3\]

2 Express the equation \(\tan(\theta + 45^\circ) - 2 \tan(\theta - 45^\circ) = 4 \) as a quadratic equation in \(\tan \theta \). Hence solve this equation for \(0^\circ \leq \theta \leq 180^\circ \). \[6\]

3 The equation \(x^5 - 3x^3 + x^2 - 4 = 0 \) has one positive root.
 (i) Verify by calculation that this root lies between 1 and 2. \[2\]
 (ii) Show that the equation can be rearranged in the form
 \[x = \sqrt[3]{3x + \frac{4}{x^2} - 1}. \] \[1\]
 (iii) Use an iterative formula based on this rearrangement to determine the positive root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. \[3\]

4 The polynomial \(4x^3 + ax + 2 \), where \(a \) is a constant, is denoted by \(p(x) \). It is given that \((2x + 1) \) is a factor of \(p(x) \).
 (i) Find the value of \(a \). \[2\]
 (ii) When \(a \) has this value,
 (a) factorise \(p(x) \), \[2\]
 (b) solve the inequality \(p(x) > 0 \), justifying your answer. \[3\]

5 Let \(I = \int_0^1 \frac{9}{(3 + x^2)^2} \, dx \).
 (i) Using the substitution \(x = (\sqrt{3}) \tan \theta \), show that \(I = \sqrt{3} \int_0^{\frac{\pi}{6}} \cos^2 \theta \, d\theta \). \[3\]
 (ii) Hence find the exact value of \(I \). \[4\]

6 A curve has equation
 \[\sin y \ln x = x - 2 \sin y, \]
 for \(-\frac{1}{2} \pi \leq y \leq \frac{1}{2} \pi \).
 (i) Find \(\frac{dy}{dx} \) in terms of \(x \) and \(y \). \[5\]
 (ii) Hence find the exact \(x \)-coordinate of the point on the curve at which the tangent is parallel to the \(x \)-axis. \[3\]
The variables \(x \) and \(y \) satisfy the differential equation
\[
\frac{dy}{dx} = xe^{x+y},
\]
and it is given that \(y = 0 \) when \(x = 0 \).

(i) Solve the differential equation and obtain an expression for \(y \) in terms of \(x \). [7]

(ii) Explain briefly why \(x \) can only take values less than 1. [1]

The line \(l \) has equation \(r = \left(\begin{array}{c} 1 \\ 2 \\ -1 \end{array} \right) + \lambda \left(\begin{array}{c} 2 \\ 1 \\ 3 \end{array} \right) \). The plane \(p \) has equation \(r \cdot \left(\begin{array}{c} 2 \\ -1 \\ -1 \end{array} \right) = 6 \).

(i) Show that \(l \) is parallel to \(p \). [3]

(ii) A line \(m \) lies in the plane \(p \) and is perpendicular to \(l \). The line \(m \) passes through the point with coordinates (5, 3, 1). Find a vector equation for \(m \). [6]

Let \(f(x) = \frac{3x^3 + 6x - 8}{x(x^2 + 2)} \).

(i) Express \(f(x) \) in the form \(A + \frac{B}{x} + \frac{Cx + D}{x^2 + 2} \). [5]

(ii) Show that \(\int_{1}^{2} f(x) \, dx = 3 - \ln 4 \). [5]

(a) Find the complex number \(z \) satisfying the equation \(z^* + 1 = 2iz \), where \(z^* \) denotes the complex conjugate of \(z \). Give your answer in the form \(x + iy \), where \(x \) and \(y \) are real. [5]

(b) (i) On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities \(|z + 1 - 3i| \leq 1 \) and \(\text{Im} \, z \geq 3 \), where \(\text{Im} \, z \) denotes the imaginary part of \(z \). [4]

(ii) Determine the difference between the greatest and least values of \(\text{arg} \, z \) for points lying in this region. [2]