This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE® and Cambridge International A and AS Level components.
Mark Scheme Notes

Marks are of the following three types:

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

• When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

• The symbol \checkmark implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

• Note: B2 or A2 means that the candidate can earn 2 or 0.

 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

• Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

• For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.
The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally acceptable)

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only – often written by a ‘fortuitous’ answer

ISW Ignore Subsequent Working

MR Misread

PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become “follow through √” marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.
1 Attempt division at least as far as quotient \(2x^2 + kx \)
 Obtain quotient \(2x^2 - x + 2 \)
 Obtain remainder 6
 Special case: Use of Remainder Theorem to give 6

 M1
 A1
 A1
 [3]

2 Either
 State or imply non-modular inequality \((x - 5)^2 < (2x + 3)^2 \) or
 corresponding pair of linear equations
 Attempt solution of 3-term quadratic equation or of 2 linear equations
 Obtain critical values \(-8\) and \(\frac{2}{3}\)
 State answer \(x < -8, \quad x > \frac{2}{3} \)

 B1
 M1
 A1

 Or
 Obtain critical value \(-8\) from graphical method, inspection, equation
 Obtain critical value \(\frac{2}{3}\) similarly
 State answer \(x < -8, \quad x > \frac{2}{3} \)

 B1
 B2
 A1
 B1
 [4]

3 Use \(2\ln x = \ln x^2 \)
 Use law for addition or subtraction of logarithms
 Obtain \(x^2 = (3 + x)(2 - x) \) or equivalent with no logarithms
 Solve 3-term quadratic equation
 Obtain critical value \(x = \frac{1}{2} \) and no other solutions

 B1
 M1
 A1
 M1
 A1
 [5]

4 (i) Use the iterative formula correctly at least once
 Obtain final answer 1.516
 Show sufficient iterations to justify accuracy to 3 dp or show sign change
 in interval \((1.5155, 1.5165)\)

 M1
 A1
 B1
 [3]

 (ii) State equation
 \(x = \sqrt[3]{\frac{1}{3} x^2 + 4x^{-3}} \) or equivalent
 Obtain exact value \(\sqrt[3]{8} \) or \(8^{0.2} \)

 B1
 [2]

5 Obtain integral of form \(ke^{2x+1} \)
 Obtain correct \(3e^{2x+1} \)
 Apply both limits correctly and rearrange at least to \(e^{2x+1} = \ldots \)
 Use logarithms correctly to find \(a \)
 Obtain 1.097

 M1
 A1
 M1
 M1
 A1
 [5]

© Cambridge International Examinations 2016
6 (i) Use product rule to obtain expression of form $k_1e^{-x} \sin 2x + k_2e^{-x} \cos 2x$
Obtain correct $-3e^{-x} \sin 2x + 6e^{-x} \cos 2x$
Substitute $x = 0$ in first derivative to obtain equation of form $y = mx$
Obtain $y = 6x$ or equivalent with no errors in solution

6 (ii) Equate first derivative to zero and obtain $\tan 2x = k$
Carry out correct process to find value of x
Obtain $x = 0.554$
Obtain $y = 1.543$

7 (i) State $3y^2 \frac{dy}{dx}$ as derivative of y^3
Equate derivative of left-hand side to zero and solve for $\frac{dy}{dx}$
Obtain $\frac{dy}{dx} = -\frac{6x^2}{3y^2}$ or equivalent
Observe x^2 and y^2 never negative and conclude appropriately

7 (ii) Equate first derivative to -2 and rearrange to $y^2 = x^2$ or equivalent
Substitute in original equation to obtain at least one equation in x^3 or y^3
Obtain $3x^3 = 24$ or $x^3 = 24$ or $3y^3 = 24$ or $-y^3 = 24$
Obtain $(2, 2)$
Obtain $(\sqrt[3]{24}, -\frac{2}{3}\sqrt[3]{24})$ or $(2.88, -2.88)$ and no others

8 (i) State $2 \sin x \cos x \cdot \frac{\cos x}{\sin x}$
Simplify to confirm $2 \cos^2 x$

8 (ii) (a) Use $\cos 2x = 2 \cos^2 x - 1$
Express in terms of $\cos x$
Obtain $16 \cos^2 x + 3$ or equivalent
State 3, following their expression of form $a \cos^2 x + b$

8 (b) Obtain integrand as $\frac{1}{2} \sec^2 2x$
Integrate to obtain form $k \tan 2x$
Obtain correct $\frac{1}{4} \tan 2x$
Apply limits correctly
Obtain $\frac{1}{4} \sqrt{3} - \frac{1}{4}$ or exact equivalent