MARK SCHEME for the October/November 2014 series

9701 CHEMISTRY

9701/35 Paper 3 (Advanced Practical Skills 1),
maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of
the examination. It shows the basis on which Examiners were instructed to award marks. It does not
indicate the details of the discussions that took place at an Examiners’ meeting before marking began,
which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner
Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for
most Cambridge IGCSE®, Cambridge International A and AS Level components and some
Cambridge O Level components.

© IGCSE is the registered trademark of Cambridge International Examinations.
<table>
<thead>
<tr>
<th>Question</th>
<th>Indicative material</th>
<th>Mark</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (a)</td>
<td>I Initial and final readings and titre value given for rough titre and initial and final readings for two (or more) accurate titrations (minimum of 2 × 2 box)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II Appropriate headings and units for accurate titration and volume FA 2 added recorded for each accurate titre. Headings should match readings. • initial/start (burette) reading/volume (not V or vol) • final/end (burette) reading/volume • titre or volume/FA 2 and used/added (but not “difference”) unit: / cm³ or (cm³) or in cm³ or cm³ for each entry</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III All accurate burette readings recorded to 0.05 cm³. The need to record to 0.05 applies only to the burette readings and not to the recorded titres. Do not award this mark if: • 50(.00) is used as an initial burette reading • more than one final burette reading is 50 (.00) • any burette reading is greater than 50 (.00)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV Has two uncorrected, accurate titres within 0.1 cm³ Do not consider the ‘rough’ even if ticked. Do not award this mark if having performed two titres within 0.10 cm³ a further titration is performed which is more than 0.10 cm³ from the closer of the initial two titres, unless a further titration, within 0.10 cm³ of any other titration has also been carried out. Do not award the mark if any ‘accurate’ burette readings (apart from initial 0) are given to zero dp. Round any burette readings to the nearest 0.05 cm³. Check and correct subtractions for Supervisor and candidate. Examiner then selects the “best” titre using the hierarchy: two (or more) identical; then two (or more) within 0.05 cm³; then two (or more) within 0.1 cm³; etc. Examiner compares candidate mean titre with Supervisor mean titre.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V, VI and VII Award V, VI and VII for a difference from Supervisor, δ ≤ 0.20 cm³ Award V and VI for 0.20 cm³ < δ ≤ 0.40 cm³ Award V only for a difference of 0.40 < δ ≤ 0.60 cm³ Spread penalty: if the ‘best’ titres are > 0.50 cm³ apart cancel one of the Q marks.</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
(b) Calculation of mean
- Candidate must average two (or more) titres where the total spread is $<0.20 \text{ cm}^3$.
- Working must be shown or ticks must be put next to the two (or more) accurate readings selected.
- The mean should normally be quoted to 2 dp, and be correctly rounded to the nearest 0.01 cm3.

Two special cases where the mean may not be to 2 dp:
- allow mean to 3 dp only for 0.025 or 0.075, e.g. 26.325;
- allow mean to 1 dp if all accurate burette readings were given to 1 dp and the mean is exactly correct, e.g. 26.0 and 26.2 = 26.1 is correct but 26.0 and 26.1 = 26.1 is incorrect.

Note: the candidate’s mean will sometimes be marked as correct even if it is different from the mean calculated by the examiner for the purpose of assessing accuracy.

(c) (i)
Correct working shown $\frac{0.110 \times \text{mean titre}}{1000}$ in step (i)

(ii)
Balanced equation with added state symbols

$$\text{Na}_2\text{CO}_3(\text{aq}) + 2\text{HNO}_3(\text{aq}) \rightarrow 2\text{NaNO}_3(\text{aq}) + \text{CO}_2(\text{g}) + \text{H}_2\text{O(l)}$$

(iii) and (iv)
Correctly calculates

moles Na_2CO_3 (in 25 cm3) = $\frac{1}{2} \times (i)$

and

moles Na_2CO_3 (in 250 cm3) = 10 \times (iii)

(v)
Correctly calculates $M_r = \frac{150.0}{4 \times (iv) \times 10}$ or $(3.75/(iv))$

Theoretical answer = 286
Correctly calculates \(x \) to the nearest integer.

\[
x = \frac{(v) - 106}{18}
\]

Allow ecf

Answers to (i), (iii), (iv) and (v) shown to 3 or 4 sf.

Minimum of 3 answers needed to qualify for the mark. All answers given must have correct sf.

(d) (i) and (ii)

\[
0.05 \text{ cm}^3
\]

\[
\% = \frac{0.1 \times 100}{\text{accurate titre}}
\]

Allow any accurate titre to be used (but not the mean).

Correct headings and units

- mass of container and FA 4/solid
- mass of container (empty/plus residue)
- mass of FA 4 (used)
- initial temperature/thermometer reading
- maximum/highest temperature/final/thermometer reading/temp./\(T \)
- temperature rise

All four weighings shown to same number of dp

Check and correct subtractions of Supervisor and candidate.

Calculate difference between (corrected) candidate’s and Supervisor’s temperature rise, \(\delta \).

Award if \(\delta \leq 1.0 \, \text{°C} \)

If \(\Delta T \) is < 6.5 °C only award if \(\delta < 0.5 \, \text{°C} \).

Correctly calculates:

- energy produced = \(25 \times 4.2 \times \text{temp rise} \) (to 2–4 sf)

- moles of FA 4 = \(\frac{\text{mass used}}{106} \)

Answer must be expressed to 2–4 sf

<table>
<thead>
<tr>
<th>Question</th>
<th>Mark</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(vi)</td>
<td>1</td>
<td>Correctly calculates (x) to the nearest integer.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Answers to (i), (iii), (iv) and (v) shown to 3 or 4 sf.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum of 3 answers needed to qualify for the mark. All answers given must have correct sf.</td>
</tr>
<tr>
<td>(d) (i) and (ii)</td>
<td>1</td>
<td>(0.05 \text{ cm}^3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(% = \frac{0.1 \times 100}{\text{accurate titre}})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allow any accurate titre to be used (but not the mean).</td>
</tr>
<tr>
<td>2 (a)</td>
<td>1</td>
<td>Correct headings and units</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• mass of container and FA 4/solid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• mass of container (empty/plus residue)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• mass of FA 4 (used)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• initial temperature/thermometer reading</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• maximum/highest temperature/final/thermometer reading/temp./(T)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• temperature rise</td>
</tr>
<tr>
<td>(a)</td>
<td>1</td>
<td>All four weighings shown to same number of dp</td>
</tr>
<tr>
<td>(a)</td>
<td></td>
<td>Check and correct subtractions of Supervisor and candidate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calculate difference between (corrected) candidate’s and Supervisor’s temperature rise, (\delta).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Award if (\delta \leq 1.0 , \text{°C})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If (\Delta T) is < 6.5 °C only award if (\delta < 0.5 , \text{°C}).</td>
</tr>
<tr>
<td>(b) (i)</td>
<td>1</td>
<td>Correctly calculates: energy produced = (25 \times 4.2 \times \text{temp rise}) (to 2–4 sf)</td>
</tr>
<tr>
<td>(ii)</td>
<td>1</td>
<td>Correctly calculates moles of FA 4 = (\frac{\text{mass used}}{106})</td>
</tr>
</tbody>
</table>

© Cambridge International Examinations 2014
(iii) Correct expression: \(\Delta H = -\frac{(i)}{(ii) \times 1000} \)

Negative sign must be shown in answer. Answer must be expressed to 2–4 sf

(c) and (a)

All four thermometer readings shown to .0°C or .5°C

Examiner calculates difference between (corrected) candidate’s and Supervisor’s temperature fall, \(\delta \).

- If \(\delta < 2.0°C \) award one mark.
- If \(\Delta T < 9.5°C \) only award if \(\delta < 1.5°C \).
- If \(\Delta T < 6.5°C \) only award if \(\delta < 1.0°C \).
- If \(\Delta T < 3.5°C \) only award if \(\delta < 0.5°C \).

(d)

(i) and (iii)

Correct expressions

Energy absorbed = \(25 \times 4.2 \times \text{temp fall} \)

\(\Delta H = +\frac{(i)}{(ii) \times 1000} \) (sign needed in final answer)

(ii) Correct expression for number of moles

\[\text{No. of moles} = \frac{\text{mass of FA} 5}{M_r} \]

\(M_r = 106 + 18x \) (\(x \) is candidate’s own value, or 8)

(e)

Attempt at use of Hess’s law, either by cycle or reverse reaction

Correctly calculates \(\Delta H_{\text{(dehydration)}} \)

\[\Delta H = (d)(iii) - (b)(iii) \]
(f) Accept one of the following answers
- Agree – acid spray is reduced (since reaction will be slower)/
 smaller T rise so less heat loss/larger volume so volume
 measurement more accurate
- Disagree – smaller temperature change, so higher (percentage)
 error of reading/reaction slower so more heat loss.

<table>
<thead>
<tr>
<th>Page 6</th>
<th>Mark Scheme</th>
<th>Syllabus</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambridge International AS/A Level – October/November 2014</td>
<td>9701</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

| FA 7 is Al₂(SO₄)₃ + NaCl; FA 8 is MgCO₃ + KI; FA 9 is (NH₄)₂Fe(SO₄)₂ |

| 3 (a) (i) | Both observations with HNO₃ recorded correctly
FA 7 no reaction / no change / dissolves
FA 8 fizzing or (gas) turns limewater milky |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[Total: 13]</td>
</tr>
</tbody>
</table>

| (ii) or (iii) | FA 7 + NaOH: white ppt, soluble in excess or
FA 7 + NH₃: (faint) white ppt, insoluble in excess |
|---------------|---|
| (iv) | FA 7 + Ba(NO₃)₂: white ppt (insoluble in acid)
and
FA 8 + Ba(NO₃)₂: no ppt / no change / no reaction |
| (v) | FA 7 + AgNO₃: white ppt, soluble in ammonia
and
FA 8 + AgNO₃: yellow ppt, insoluble in NH₃ |

All four correct observations required.
(vi) cation
 cation is aluminium / Al^{3+}

 and

 white ppt with NH_3 insoluble in excess

 anions
 FA 7 anions: sulfate and chlorine / SO_4^{2-} and Cl^-
 FA 8 anions: carbonate and iodide / CO_3^{2-} and I^-

 All four identities correct = 2 marks
 Any 2 or 3 identities correct = 1 mark

(b) (i)
 Any two observations correct = 1 mark
 Any three (or more) correct = 2 marks

 • FA 9 is (pale) green
 • steam / vapour / condensation / water / liquid
 • litmus turns blue
 • yellow / white / brown residue / formed
 • white smoke (produced on strong heating)
 • litmus turns red on strong heating

(ii)
 Uses NaOH as reagent

 With NaOH or NH_3 (dark/dirty) green ppt formed and Fe^{2+} identified.

 With NaOH and heat gas/ammonia turns litmus blue and NH_4^+ identified

[Total: 12]