READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 12 and 13.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 13 printed pages and 3 blank pages and 1 insert.
1 You are to investigate how the rate of reaction between sodium thiosulfate and hydrochloric acid changes as the concentration of the sodium thiosulfate solution is varied.

When aqueous sodium thiosulfate reacts with aqueous hydrogen ions present in an acid, a fine suspension of solid sulfur is formed in the solution.

\[
\text{S}_2\text{O}_3^{2-} (\text{aq}) + 2\text{H}^+ (\text{aq}) \rightarrow \text{S} (\text{s}) + \text{SO}_2 (\text{g}) + \text{H}_2\text{O} (\text{l})
\]

The rate of reaction can be determined by measuring the time taken to produce a fixed quantity of sulfur. The beaker containing a constant volume of reaction mixture is placed on the printed insert supplied. The time is recorded when the print is no longer visible through the suspension of sulfur.

FA 1 is 0.150 mol dm\(^{-3}\) sodium thiosulfate, \(\text{Na}_2\text{S}_2\text{O}_3\).

FA 2 is 0.500 mol dm\(^{-3}\) hydrochloric acid, \(\text{HCl}\).

distilled water

Read through the instructions carefully and prepare a table for your results on page 4 before starting any practical work.

In each of the following experiments you will use varying volumes of FA 1 and distilled water and a fixed volume of FA 2. The total volume of solution used will be constant.

(a) Method

Experiment 1

- Use the measuring cylinder labelled A to transfer 50 cm\(^3\) of FA 1 into a 250 cm\(^3\) beaker.
- Use the measuring cylinder labelled B to measure 20 cm\(^3\) of FA 2.
- Tip the FA 2 from measuring cylinder B into the beaker and immediately start timing.
- Stir the contents of the beaker once and place the beaker on the printed insert.
- View the print from directly above and through the solution in the beaker.
- Stop timing when the printed material on the insert is just no longer visible.
- Record the reaction time to the nearest second.
- Calculate and record the value of \(\frac{1000}{(\text{reaction time})}\) to 3 significant figures.
- Empty, rinse and dry the beaker.
Experiment 2

- Use the measuring cylinder labelled A to transfer 40 cm³ of FA 1 into the rinsed and dried beaker.
- Use the same measuring cylinder labelled A to transfer 10 cm³ of distilled water into the same beaker.
- Use the measuring cylinder labelled B to measure 20 cm³ of FA 2.
- Tip the FA 2 from measuring cylinder B into the beaker and immediately start timing.
- Stir the contents of the beaker once and place the beaker on the printed insert.
- View the print from directly above and through the solution in the beaker.
- Stop timing when the printed material on the insert is just no longer visible.
- Record the reaction time to the nearest second.
- Calculate and record the value of \(\frac{1000}{(\text{reaction time})} \) to 3 significant figures.
- Empty, rinse and dry the beaker.

Experiments 3–5

- Repeat the experiment using the following volumes of FA 1 and distilled water.

 | Experiment 3 | 30 cm³ of FA 1 + 20 cm³ of distilled water |
 | Experiment 4 | 20 cm³ of FA 1 + 30 cm³ of distilled water |
 | Experiment 5 | 10 cm³ of FA 1 + 40 cm³ of distilled water |

Experiment 6

When you have completed experiments 1–5, carry out one further experiment using a different volume of both FA 1 and distilled water.

When you have completed all of your experiments, empty and rinse the beaker.
Record the results for all six experiments in the space below. Your table should include columns for the following.

- experiment number
- volume of FA 1
- volume of distilled water
- reaction time

\[
\text{rate} = \frac{\text{(1000)}}{(\text{reaction time})}
\]

(b) The rate of reaction can be represented by the following formula.

On the next page plot a graph of ‘rate’ against the volume of FA 1.

Start each of the axes at zero.

Draw the line of best fit.
(c) A student carried out the experiments in a 100 cm³ beaker instead of a 250 cm³ beaker. State and explain what effect this would have on the times recorded.

...
...
...
...

(d) FA 1 is 0.150 mol dm⁻³ Na₂S₂O₃.
Calculate the initial concentration of Na₂S₂O₃ in the reaction mixture in Experiment 5. Show your working.

The initial concentration of Na₂S₂O₃ in Experiment 5 = ………………………… mol dm⁻³

(e) In your experiments, the volume of FA 1 represents the initial concentration of sodium thiosulfate in the reaction mixture.
A text book states that the rate of reaction between aqueous sodium thiosulfate and hydrochloric acid is directly proportional to the concentration of sodium thiosulfate. Use your graph to decide whether the statement in the text book is correct or not. Explain your answer.

...
...
...
...
...
...
...
(f) When viewing the insert through the solution it is difficult to judge the exact moment when the printed material just disappears.

This uncertainty is different for each experiment and is greater for longer reaction times when the printed material disappears slowly.

Complete the table below, assuming the uncertainties given.

<table>
<thead>
<tr>
<th></th>
<th>Experiment 1</th>
<th>Experiment 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>recorded reaction time / s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>uncertainty / s</td>
<td>±2</td>
<td>±8</td>
</tr>
<tr>
<td>percentage uncertainty</td>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>

[1]

(g) Complete the headings in the table below to record the volume of FA 1 (aqueous sodium thiosulfate), the volume of distilled water and the volume of FA 2 (hydrochloric acid).

In the second row copy the volumes used in Experiment 3 from your table of results on page 4.

In the following two rows suggest volumes of each of the reagents that could be used in two further experiments, Experiment 7 and Experiment 8, to investigate how the rate of reaction varies with a change in the concentration of the acid.

Do not carry out these experiments.

<table>
<thead>
<tr>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

[2]

[Total: 25]
2 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs.
Marks are not given for chemical equations.
No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

Solutions FA 3, FA 4, FA 5 and FA 6 each contain one cation and one anion from those listed on pages 12 and 13.

(a) Some cations interfere with tests for anions and have to be removed from the solution before the tests for anions present can be performed. One way in which this can be carried out is to precipitate the cation in the form of its insoluble carbonate.

Carry out the following tests on both FA 3 and FA 5.

<table>
<thead>
<tr>
<th>test</th>
<th>observation</th>
<th>FA 3</th>
<th>FA 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>To 5 cm depth of solution in a boiling tube, add all of the sodium carbonate, Na₂CO₃, from one of the tubes provided. Stir the mixture.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retain the mixture from FA 3 for use in (b).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[4]
(b) Filter the mixture from FA 3 from (a) into another boiling tube. Ignore any colour in the filtered solution.
Add 5 cm depth of dilute nitric acid. This removes any excess of carbonate ions.

Carry out the following tests on the acidified filtrate from FA 3.

<table>
<thead>
<tr>
<th>test</th>
<th>observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>To 2 cm depth of the acidified filtrate from FA 3 in a test-tube, add 1 cm depth of aqueous silver nitrate, then add an excess of aqueous ammonia.</td>
<td></td>
</tr>
</tbody>
</table>

[1]

(c) Carry out the following test on FA 4.

<table>
<thead>
<tr>
<th>test</th>
<th>observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>To 1 cm depth of FA 4 in a test-tube, add 1 cm depth of FA 3, then add a few drops of starch solution.</td>
<td></td>
</tr>
</tbody>
</table>

[2]
(d) Carry out the following tests.

<table>
<thead>
<tr>
<th>test</th>
<th>observation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FA 3</td>
</tr>
<tr>
<td>To 1 cm depth of solution in a test-tube, use a dropping pipette to add, a little at a time, 0.5 cm depth of aqueous sodium hydroxide, then add a further 2 cm depth of aqueous sodium hydroxide.</td>
<td></td>
</tr>
<tr>
<td>To 1 cm depth of solution in a test-tube, use a dropping pipette to add, a little at a time, 0.5 cm depth of aqueous ammonia, then add a further 2 cm depth of aqueous ammonia.</td>
<td></td>
</tr>
</tbody>
</table>

(e) The results from tests in (d) should enable you to identify either a single cation in a solution, or a pair of cations which have identical reactions with the reagents used. Identify any single ion that is present or suggest a pair of ions that may be present in each of the solutions.

<table>
<thead>
<tr>
<th>solution</th>
<th>cation(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA 3</td>
<td></td>
</tr>
<tr>
<td>FA 4</td>
<td></td>
</tr>
<tr>
<td>FA 5</td>
<td></td>
</tr>
<tr>
<td>FA 6</td>
<td></td>
</tr>
</tbody>
</table>

[4]

[2]
(f) Where you were unable to identify a single cation in (e), suggest a suitable reagent which would allow you to identify which cation is present in the solution.

Do not carry out this test.

The reagent to be used is ...

State the expected observations to identify the presence of each of the cations from the pair of ions you have given in (e).

cation 1

cation 2 [1]

(g) By considering the results of all your tests, enter one of the following responses in each of the boxes below.

- chloride
- bromide
- iodide
- no halide ion is present
- insufficient tests (have been performed to identify any halide ion)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FA 3</td>
<td></td>
</tr>
<tr>
<td>FA 4</td>
<td></td>
</tr>
<tr>
<td>FA 5</td>
<td></td>
</tr>
</tbody>
</table>

[1] [Total 15]
Qualitative Analysis Notes

Key: $[ppt. = precipitate]$

1 Reactions of aqueous cations

<table>
<thead>
<tr>
<th>ion</th>
<th>reaction with NaOH(aq)</th>
<th>reaction with NH₃(aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aluminium, Al³⁺(aq)</td>
<td>white ppt. soluble in excess</td>
<td>white ppt. insoluble in excess</td>
</tr>
<tr>
<td>ammonium, NH₄⁺(aq)</td>
<td>no ppt. ammonia produced on heating</td>
<td>–</td>
</tr>
<tr>
<td>barium, Ba²⁺(aq)</td>
<td>no ppt. (if reagents are pure)</td>
<td>no ppt.</td>
</tr>
<tr>
<td>calcium, Ca²⁺(aq)</td>
<td>white ppt. with high [Ca²⁺(aq)]</td>
<td>no ppt.</td>
</tr>
<tr>
<td>chromium(III), Cr³⁺(aq)</td>
<td>grey-green ppt. soluble in excess giving dark green solution</td>
<td>grey-green ppt. insoluble in excess</td>
</tr>
<tr>
<td>copper(II), Cu²⁺(aq)</td>
<td>pale blue ppt. insoluble in excess</td>
<td>blue ppt. soluble in excess giving dark blue solution</td>
</tr>
<tr>
<td>iron(II), Fe²⁺(aq)</td>
<td>green ppt. turning brown on contact with air insoluble in excess</td>
<td>green ppt. turning brown on contact with air insoluble in excess</td>
</tr>
<tr>
<td>iron(III), Fe³⁺(aq)</td>
<td>red-brown ppt. insoluble in excess</td>
<td>red-brown ppt. insoluble in excess</td>
</tr>
<tr>
<td>lead(II), Pb²⁺(aq)</td>
<td>white ppt. soluble in excess</td>
<td>white ppt. insoluble in excess</td>
</tr>
<tr>
<td>magnesium, Mg²⁺(aq)</td>
<td>white ppt. insoluble in excess</td>
<td>white ppt. insoluble in excess</td>
</tr>
<tr>
<td>manganese(II), Mn²⁺(aq)</td>
<td>off-white ppt. rapidly turning brown on contact with air insoluble in excess</td>
<td>off-white ppt. rapidly turning brown on contact with air insoluble in excess</td>
</tr>
<tr>
<td>zinc, Zn²⁺(aq)</td>
<td>white ppt. soluble in excess</td>
<td>white ppt. soluble in excess</td>
</tr>
</tbody>
</table>

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]
2 Reactions of anions

<table>
<thead>
<tr>
<th>ion</th>
<th>reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbonate, (\text{CO}_3^{2-})</td>
<td>(\text{CO}_2) liberated by dilute acids</td>
</tr>
</tbody>
</table>
| chromate(VI), \(\text{CrO}_4^{2-}(aq) \) | yellow solution turns orange with \(\text{H}^+(aq) \);
gives yellow ppt. with \(\text{Ba}^{2+}(aq) \);
gives bright yellow ppt. with \(\text{Pb}^{2+}(aq) \) |
| chloride, \(\text{Cl}^-(aq) \) | gives white ppt. with \(\text{Ag}^+(aq) \) (soluble in \(\text{NH}_3(aq) \));
gives white ppt. with \(\text{Pb}^{2+}(aq) \) |
| bromide, \(\text{Br}^-(aq) \) | gives cream ppt. with \(\text{Ag}^+(aq) \) (partially soluble in \(\text{NH}_3(aq) \));
gives white ppt. with \(\text{Pb}^{2+}(aq) \) |
| iodide, \(\text{I}^-(aq) \) | gives yellow ppt. with \(\text{Ag}^+(aq) \) (insoluble in \(\text{NH}_3(aq) \));
gives yellow ppt. with \(\text{Pb}^{2+}(aq) \) |
| nitrate, \(\text{NO}_3^-(aq) \) | \(\text{NH}_3 \) liberated on heating with \(\text{OH}^-(aq) \) and \(\text{Al} \) foil |
| nitrite, \(\text{NO}_2^-(aq) \) | \(\text{NH}_3 \) liberated on heating with \(\text{OH}^-(aq) \) and \(\text{Al} \) foil;
NO \(\text{liberated by dilute acids} \)
(colourless \(\text{NO} \rightarrow \) (pale) brown \(\text{NO}_2 \) in air) |
| sulfate, \(\text{SO}_4^{2-}(aq) \) | gives white ppt. with \(\text{Ba}^{2+}(aq) \) or with \(\text{Pb}^{2+}(aq) \) (insoluble in excess dilute strong acids) |
| sulfite, \(\text{SO}_3^{2-}(aq) \) | \(\text{SO}_2 \) liberated with dilute acids;
gives white ppt. with \(\text{Ba}^{2+}(aq) \) (soluble in excess dilute strong acids) |

3 Tests for gases

<table>
<thead>
<tr>
<th>gas</th>
<th>test and test result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonia, (\text{NH}_3)</td>
<td>turns damp red litmus paper blue</td>
</tr>
</tbody>
</table>
| carbon dioxide, \(\text{CO}_2 \) | gives a white ppt. with limewater
(ppt. dissolves with excess \(\text{CO}_2 \)) |
| chlorine, \(\text{Cl}_2 \) | bleaches damp litmus paper |
| hydrogen, \(\text{H}_2 \) | “pops” with a lighted splint |
| oxygen, \(\text{O}_2 \) | relights a glowing splint |
| sulfur dioxide, \(\text{SO}_2 \) | turns acidified aqueous potassium dichromate(VI) from orange to green |