CHEMISTRY
Paper 2 Structured Questions AS Core
October/November 2010
1 hour 15 minutes

Candidates answer on the Question Paper.
Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, Centre number and candidate number on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams, graphs, or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE ON ANY BARCODES.

Answer all questions.
You may lose marks if you do not show your working or if you do not use appropriate units.
A Data Booklet is provided.

The number of marks is given in brackets [] at the end of each question or part question.
At the end of the examination, fasten all your work securely together.

For Examiner's Use

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
In 1814, Sir Humphrey Davy and Michael Faraday collected samples of a flammable gas, \(\text{A} \), from the ground near Florence in Italy. They analysed \(\text{A} \) which they found to be a hydrocarbon. Further experiments were then carried out to determine the molecular formula of \(\text{A} \).

(a) What is meant by the term *molecular formula*?

..
..
..
...[2]

Davy and Faraday deduced the formula of \(\text{A} \) by exploding it with an excess of oxygen and analysing the products of combustion.

(b) Complete and balance the following equation for the complete combustion of a hydrocarbon with the formula \(\text{C}_x\text{H}_y \).

\[\text{C}_x\text{H}_y + \left(x + \frac{y}{4}\right)\text{O}_2 \rightarrow \ldots + \ldots \]

[2]

(c) When 10 cm\(^3\) of \(\text{A} \) was mixed at room temperature with 50 cm\(^3\) of oxygen (an excess) and exploded, 40 cm\(^3\) of gas remained after cooling the apparatus to room temperature and pressure. When this 40 cm\(^3\) of gas was shaken with an excess of aqueous potassium hydroxide, KOH, 30 cm\(^3\) of gas still remained.

(i) What is the identity of the 30 cm\(^3\) of gas that remained at the end of the experiment?

...

(ii) The combustion of \(\text{A} \) produced a gas that reacted with the KOH(aq).

What is the identity of this gas?

...

(iii) What volume of the gas you have identified in (ii) was produced by the combustion of \(\text{A} \)?

...cm\(^3\)

(iv) What volume of oxygen was used up in the combustion of \(\text{A} \)?

...cm\(^3\) [4]
(d) Use your equation in (b) and your results from (c)(iii) and (c)(iv) to calculate the molecular formula of A. Show all of your working.

[3]

[Total: 11]
Nitrogen makes up about 79% of the Earth's atmosphere. As a constituent element of proteins, it is present in living organisms.

Atmospheric nitrogen is used in the Haber process for the manufacture of ammonia.

(a) Write an equation for the formation of ammonia in the Haber process.

..[1]

(b) The Haber process is usually carried out at a high pressure of between 60 and 200 atmospheres (between $60 \times 10^5 \text{ Pa}$ and $200 \times 10^5 \text{ Pa}$). State two further important operating conditions that are used in the Haber process. For each of your conditions, explain why it is used.

condition 1 ...
reason ..
condition 2 ...
reason ..[4]

(c) State one large-scale use for ammonia, other than in the production of nitrogenous fertilisers.

...[1]

(d) The uncontrolled use of nitrogenous fertilisers can cause environmental damage to lakes and streams. This is known as 'eutrophication'.

What are the processes that occur when excessive amounts of nitrogenous fertilisers get into lakes and streams?

..
..
..[2]
In many countries, new cars have to comply with regulations which are intended to reduce the pollutants coming from their internal combustion engines.

Two pollutants that may be formed in an internal combustion engine are carbon monoxide, CO, and nitrogen monoxide, NO.

(e) (i) Outline how each of these pollutants may be formed in an internal combustion engine.

CO ..
..

NO ..
..

(ii) State the main hazard associated with each of these pollutants.

CO ..

NO .. [4]

Pollutants such as CO and NO are removed from the exhaust gases of internal combustion engines by catalytic converters which are placed in the exhaust system of a car.

(f) (i) What metal is most commonly used as the catalyst in a catalytic converter?

..[2]

(ii) Construct one balanced equation for the reaction in which both CO and NO are removed from the exhaust gases by a catalytic converter.

..[2]

[Total: 14]
3 Crude oil is a naturally occurring flammable liquid which consists of a complex mixture of hydrocarbons. In order to separate the hydrocarbons the crude oil is subjected to fractional distillation.

(a) Explain what is meant by the following terms.

(i) hydrocarbon

(ii) fractional distillation

(b) Undecane, C_{11}H_{24}, is a long chain hydrocarbon which is present in crude oil. Such long chain hydrocarbons are 'cracked' to produce alkanes and alkenes which have smaller molecules.

(i) Give the conditions for two different processes by which long chain molecules may be cracked.

process 1 ..

process 2 ..

(ii) Undecane, C_{11}H_{24}, can be cracked to form pentane, C_{5}H_{12}, and an alkene. Construct a balanced equation for this reaction.

...

Pentane, C_{5}H_{12}, exhibits structural isomerism.

(c) (i) Draw the three structural isomers of pentane.

<table>
<thead>
<tr>
<th>isomer B</th>
<th>isomer C</th>
<th>isomer D</th>
</tr>
</thead>
</table>

© UCLES 2010
(ii) The three isomers of pentane have different boiling points.

Which of your isomers has the highest boiling point?

isomer

Suggest an explanation for your answer.

..
..
...[6]

The unsaturated hydrocarbon, \(E \), is obtained by cracking hexane and is important in the chemical industry.

The standard enthalpy change of combustion of \(E \) is \(-2059 \text{ kJ mol}^{-1}\).

(d) Define the term standard enthalpy change of combustion.

..
..[2]

When 0.47 g of \(E \) was completely burnt in air, the heat produced raised the temperature of 200 g of water by 27.5 °C. Assume no heat losses occurred during this experiment.

(e) (i) Use relevant data from the Data Booklet to calculate the amount of heat released in this experiment.

(ii) Use the data above and your answer to (i) to calculate the relative molecular mass, \(M_r \), of \(E \).

..[4]

(f) Deduce the molecular formula of \(E \).
Halogenoalkanes have many chemical uses, particularly as intermediates in organic reactions.

Three reactions of 1-bromobutane, \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{Br} \), are shown below.

\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{OH} & \quad \text{reaction 1} & \quad \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{NH}_2 & \quad \text{reaction 2} \\
\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{Br} & \quad \text{reaction 3} & \quad \text{CH}_3\text{CH}_2\text{CH}=&\text{CH}_2
\end{align*}
\]

(a) For each reaction, state the reagent and solvent used.

<table>
<thead>
<tr>
<th>Reaction 1</th>
<th>Reagent</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaction 2</th>
<th>Reagent</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaction 3</th>
<th>Reagent</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) When 1-iodobutane, \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{I} \), is reacted under the same conditions as those used in reaction 1, butan-1-ol is formed.

What difference, if any, would there be in the rate of this reaction compared to the reaction of 1-bromobutane?

Use appropriate data from the *Data Booklet* to explain your answer.

..
..
..
..
..[3]
Dichlorodifluoromethane, CC_2F_2, is an example of a chlorofluorocarbon (CFC) that was formerly used as an aerosol propellant. In September 2007, at the Montreal summit, approximately 200 countries agreed to phase out the use of CFCs by 2020.

(c) State two properties of CFCs that made them suitable as aerosol propellants.

1. ...
2. ... [2]

(d) When CFCs are present in the upper atmosphere, homolytic fission takes place in the presence of ultraviolet light.

(i) What is meant by the term homolytic fission?
..
..

(ii) Suggest an equation for the homolytic fission of CC_2F_2.
... [2]

(e) The most common replacements for CFCs as aerosol propellants are hydrocarbons such as propane and butane.

Suggest one disadvantage of these compounds as aerosol propellants.
.. [1]
The gaseous hydrogen halides HCl, HBr and HI, may be prepared by reacting the corresponding sodium salt with anhydrous phosphoric(V) acid, H₃PO₄.

When the sodium halide NaX was used, the following reaction occurred and a sample of gaseous HX was collected in a gas jar.

\[\text{NaX} + \text{H₃PO₄} \rightarrow \text{NaH₂PO₄} + \text{HX} \]

A hot glass rod was placed in the sample of HX and immediately a red/orange colour was observed.

(a) What is the identity of NaX?

... [1]

(b) What gas, other than HX, would be formed if concentrated sulfuric acid were used with NaX instead of phosphoric(V) acid?

... [1]

(c) Suggest why phosphoric(V) acid rather than concentrated sulfuric acid is used to make samples of HX from the corresponding sodium salt. Explain your answer.

..
..[1]

[Total: 3]