MARK SCHEME for the October/November 2010 question paper
for the guidance of teachers

9701 CHEMISTRY
9701/41 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.
1 (a) \(\text{PCl}_5 + 4\text{H}_2\text{O} \rightarrow \text{H}_3\text{PO}_4 + 5\text{HCl} \) (1)

\[\text{SiCl}_4 + 2\text{H}_2\text{O} \rightarrow \text{SiO}_2 + 4\text{HCl} \text{ (or giving H}_2\text{SiO}_3, \text{Si(OH)}_4 \text{ etc.)} \] (1)

(b) bond energies:
- S-S = 264 kJ mol\(^{-1}\)
- Cl-Cl = 244 kJ mol\(^{-1}\)
- S-Cl = 250 kJ mol\(^{-1}\)

\[\Delta H = 8 \times 264 + 8 \times 244 - 16 \times 250 = +64 \text{ kJ mol}^{-1} \] (2)

(c) (i) +2 (1)

(ii) (half) the sulfur goes up by +2, (1)
(the other half) goes down by –2 (1)

(iii) HCl (can be read into (iv)) (1)

(iv) \(2\text{SCl}_2 + 2\text{H}_2\text{O} \rightarrow \text{S} + \text{SO}_2 + 4\text{HCl} \) (1)

(v) (+ Ag\(\text{NO}_3\)) white ppt. (1)
(+ K\(\text{}_2\text{Cr}_2\text{O}_7\)) solution turns green (1)

[Total: 11]

2 (a) (i) A ligand is a species that contains a lone pair of electrons, or that can form a dative bond (to a transition element) (1)

(ii)

<table>
<thead>
<tr>
<th>species</th>
<th>can be a ligand</th>
<th>cannot be a ligand</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH(^-)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>NH(_4)(^+)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CH(_3)OH</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CH(_3)NH(_2)</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

(4 × \(\frac{1}{2}\)) (3)

(b) (i) C is \([\text{Cu(NH}_3\text{)}_6]^{2+} \text{SO}_4^{2-}\) (allow \([\text{Cu(NH}_3\text{)}_4]^{2+} \text{SO}_4^{2-}\) (1)
D is CuO (1)
E is Na\(_2\)SO\(_4\) (1)
F is BaSO\(_4\) (1)

(ii) acid-base or neutralisation (1) (5)

(c) (i) any two from:
brown fumes or vapour evolved / gas relights glowing splint / black solid formed (2)

(ii) \(2\text{Cu(NO}_3\text{)}_2 \rightarrow 2\text{CuO} + 4\text{NO}_2 + \text{O}_2 \) (1)

[Total: 11 max 10]
3 (a) (i) \(\text{Cu}(s) - 2e^- \rightarrow \text{Cu}^{2+}(aq) \) allow electrons on RHS (1)

(ii) \(E^o \) for \(\text{Ag}^+/\text{Ag} \) is +0.80V which is more positive than +0.34V for \(\text{Cu}^{2+}/\text{Cu} \), (1) so it’s less easily oxidised (owtte) (1)

(iii) \(E^o \) for \(\text{Ni}^{2+} \) is –0.25V, (1) \(\text{Ni} \) is readily oxidised and goes into solution as \(\text{Ni}^{2+}(aq) \) (1) [Mark (ii) and (iii) to max 3]

(iv) \(\text{Cu}^{2+}(aq) + 2e^- \rightarrow \text{Cu}(s) \) (1)

(v) \(E^o \) for \(\text{Zn}^{2+}/\text{Zn} \) is negative / = –0.76V, so \(\text{Zn}^{2+} \) is not easily reduced. (1)

(vi) The blue colour fades because \(\text{Cu}^{2+}(aq) \) is being replaced by \(\text{Zn}^{2+}(aq) \) or \(\text{Ni}^{2+}(aq) \) or [\(\text{Cu}^{2+} \)] decreases (1) [7]

(b) amount of copper \(= \frac{225}{63.5} = 3.54(3) \) mol (1)
amount of electrons needed \(= 2 \times 3.54 = 7.08/9 \) (7.087) mol (1)
no. of coulombs \(= 20 \times 10 \times 60 \times 60 = 7.2 \times 10^5 \) C
no. of moles of electrons \(= 7.2 \times 10^5/9.65 \times 10^4 = 7.46 \) mol (1)
percentage “wasted” \(= 100 \times (7.461 – 7.087)/7.461 = 5.01(5.0) \% \) (accept 4.98–5.10) (1)

(c) \(E^o \) data: \(\text{Ni}^{2+}/\text{Ni} = –0.25V \)
\(\text{Fe}^{2+}/\text{Fe} = –0.44V \) (1)
Because the Fe potential is more negative than the Ni potential, the iron will dissolve (1) [2]

[Total: 13]

4 (a) (i) \(\text{SnO}_2 \) Can be read into equation (1)
\(2\text{NaOH} + \text{SnO}_2 \rightarrow \text{Na}_2\text{SnO}_3 + \text{H}_2\text{O} \) (1)

(ii) \(\text{PbO} \) Can be read into equation (1)
\(\text{PbO} + 2\text{HCl} \rightarrow \text{PbCl}_2 + \text{H}_2\text{O} \) (1)

(b) moles of oxygen \(= \frac{9.3}{16} = 0.581 \) mol
moles of lead \(= \frac{90.7}{207} = 0.438 \) mol (both 3 s.f.) (1)
so formula is \(\text{Pb}_3\text{O}_4 \) (1) [2]

(c) (i) \(K_{sp} = [\text{Pb}^{2+}]\text{[Cl}^–]\)\(^2 \) (1) units = \(\text{mol}^3 \text{dm}^{-9} \) (1)

(ii) if \([\text{Pb}^{2+}] = x \), \(K_{sp} = 4x^3 \), so \(x = \sqrt[3]{K_{sp}/4} \)
\([\text{Pb}^{2+}] = \sqrt[3]{2 \times 10^{-5}/4} = 1.71 \times 10^{-2} \) mol dm\(^{-3} \) (1)

(iii) \([\text{Pb}^{2+}] = 2 \times 10^{-5}/(0.5)^2 = 8.0 \times 10^{-5} \) mol dm\(^{-3} \) (1)

(iv) common ion effect, or increased \([\text{Cl}^-]\) forces solubility equilibrium over to the left (1)

[Max 4]

[Total: 10]
5 (a) (i) ester (1)

(ii) H is nitrobenzene – structure needed here (1)
J is phenyldiazonium chloride – structure needed here (1)

(iii) step 2 $\text{Sn/Zn + HCl} / H_2 + \text{named cat} / \text{NaBH}_4 / \text{LiAlH}_4 / \text{Na} + \text{ethanol}$ (1)
step 3 $\text{HNO}_2/\text{NaNO}_2 + \text{HCl at } T = 10^\circ\text{C or less}$ (1)
step 4 heat/warm to $T > 10^\circ\text{C}$ (1)
step 5 $\text{CH}_3\text{COCl} / \text{CH}_3\text{COCOCOCH}_3$ (1)

(b) (i) compounds that have the same molecular formula, but different structures (1)

(ii) phenol (NOT hydroxy) (1)
(methyl) ketone or carbonyl (1)

(iii) K is 4-ethanoylphenol, HO-C_6H_4-COCH$_3$ (must be 1,4- disubstituted isomer) (1)

(iv) $\text{I}_2 + \text{NaOH(aq)}$

$\text{Br}_2\text{(aq)}$

NaOH(aq)

[7]

CO_2^- (1) for CO_2^-; (1) for O^-

In any positions

(2 × Br needed)

(anion needed)

[4]

[8 max 7]

[Total: 14]
6 (a) ![Molecule](image)

(1) for each centre – more than 2 centres shown deduct 1 mark

(b) (i) step 1 LiAlH₄ or NaBH₄ or Na + ethanol or H₂ + Ni (1)
 step 2 heat with Al₂O₃ / porous pot or conc. H₂SO₄ / H₃PO₄ (1)

(ii) ![Molecules](image)

L (1)

(letters may be reversed)

(c) (i) M (no mark)

(ii) ![Molecule](image)

i.e. 3,7-dimethyl-6-oxo-octanoic acid (1)

(iii) 2,4-DNPH (1) orange ppt. with P (none with N) (1)

Mark ecf from candidates’ P

(d) ![Reaction](image)

2 curly arrows (1)

carbocation intermediate + Cl⁻ (1)

lone pair on Cl⁻ and last curly arrow (1)

[Total: 12]
7 (a) (i) Disulfide bond / group / bridge (1)
 (ii) The tertiary structure (1)
 (iii) The substrate will no longer bond to / fit into the active site (1)
 or shape of active site is changed [3]

 (b) (i) Acid-base / proton donor / neutralisation / salt formation (1)
 (ii) The ability of the –CO₂H group to form hydrogen bonds (1) and ionic interactions (1)
 The –CO₂H–CO₂⁻ group is no longer able to interact with –NH₂/–NH₃⁺ (1)
 The Ag⁺ forms a strong bond with –COO⁻ (1) [5] max [4]

 (c) (i) 8 but allow 4O₂ if specified as molecules (1)
 (ii) Dative / co-ordinate (1)
 (iii) Octahedral / 6 co-ordinate (1) [3]
 [Total: 10]

8 (a) Protons (1)
 in NMR, energy is absorbed due to the two spin states (1)
 Electrons (1)
 in X-ray crystallography, X-rays are diffracted (by regions of high electron density) (1) [4]

 (b) (i) 1 – no mark
 The spectrum of alcohol / Y contains different peaks
 Alcohol / Y contains different chemical environments
 Spectrum 2 contains only one peak (1)
 (ii) Spectrum 2 only shows 1 peak so Z must be a ketone (1)
 Hence Y must be a 2° alcohol (1)
 Number of carbon atoms present \(\frac{0.6 \times 100}{17.6 \times 1.1} = 3 \) (1)
 Thus Z must be CH₃COCH₃ (1)
 Hence Y must be propan-2-ol, CH₃CH(OH)CH₃ (1)
 (iii) \[
 \begin{array}{c}
 \text{H} \\
 \text{Y is } \text{CH}_3 - \text{C} - \text{CH}_3 \\
 \text{OH}
 \end{array}
 \] (1)
 (iv) All of the protons in Z are in the same chemical environment (1) [8] max [7]
 [Total: 11]
9 (a) (i) A few nanometres (accept 0.5–10 nm) (1)

(ii) Graphite/graphene (1)

(iii) van der Waals’ (1)
 Carbon atoms in the nanotubes are joined by covalent bonds (1)
 (as are the hydrogen atoms in a hydrogen molecule)
 or no dipoles on C or H₂ or the substances are non-polar [4]

(b) More hydrogen can be packed into the same space/volume (1) [1]

(c) If a system at equilibrium is disturbed, the equilibrium moves in the direction which tends to reduce the disturbance (owtte) (1)

 When H₂ is removed the pressure drops and more H₂ is released from that adsorbed (1)

 The equilibrium H₂adsorbed ⇌ H₂gaseous (1)

 Equilibrium shifts to the right as pressure drops (1) [4]

[Total: 9]