READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Give details of the practical session and laboratory where appropriate, in the boxes provided. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.

Answer all questions. You are advised to show all working in calculations. Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 11 and 12.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner’s Use

1

2

3

Total
You are required to find the concentration in mol dm\(^{-3}\) of sodium thiosulphate, Na\(_2\)S\(_2\)O\(_3\), in solution FB 1.

FB 1 contains sodium thiosulphate.
FB 2 is potassium manganate(VII) containing 28.44 g dm\(^{-3}\) KMnO\(_4\).
FB 3 is 1.0 mol dm\(^{-3}\) sulphuric acid, H\(_2\)SO\(_4\).
FB 4 is 10% potassium iodide containing 100 g dm\(^{-3}\) KI.
You are also provided with starch indicator.

Dilution of FB 2

(a) By using a burette measure between 41.00 cm\(^3\) and 42.00 cm\(^3\) of FB 2 into the 250 cm\(^3\) graduated (volumetric) flask labelled FB 5.
Record your burette readings and the volume of FB 2 added to the flask in the space below.

Make up the contents of the flask to the 250 cm\(^3\) mark with distilled water. Place the stopper in the flask and mix the contents thoroughly by slowly inverting the flask a number of times.

Titration

Fill a second burette with FB 1, the solution containing sodium thiosulphate.

Use a measuring cylinder to transfer 10 cm\(^3\) of FB 3 and 10 cm\(^3\) of FB 4 into a conical flask. Pipette 25.0 cm\(^3\) of FB 5 into the conical flask containing the mixture of FB 3 and FB 4. The potassium manganate(VII) oxidises potassium iodide to iodine, I\(_2\).

Titratre the liberated iodine with FB 1 as follows. Run the solution from the burette into the conical flask until the initial red/brown colour of the iodine becomes pale yellow. Then add 1 cm\(^3\) of the starch indicator and continue to add FB 1 drop by drop until the blue/black colour of the starch/iodine complex disappears, leaving a colourless solution. This is the end-point of the titration.

Perform a rough (trial) titration and sufficient further titrations to obtain accurate results.

Record your titration results in the space below. Make certain that your recorded results show the precision of your working.
(b) From your titration results obtain a volume of **FB 1** to be used in your calculations. Show clearly how you obtained this volume.

The volume of **FB 1** is cm³. [1]

Calculations

Show your working and appropriate significant figures in all of your calculations.

(c) Calculate how many moles of KMnO₄ are contained in the **FB 2** run into the graduated flask. [Aᵣ: K, 39.1; O, 16.0; Mn, 54.9]

............... mol of KMnO₄ are run into the graduated flask.

Calculate how many moles of KMnO₄ are then pipetted from the 250 cm³ graduated flask into the titration flask.

............... mol of KMnO₄ are pipetted into the titration flask.

Use this answer to calculate how many moles of iodine molecules, I₂, are formed when the manganate(VII) ions react with an excess of iodide ions in the titration flask.

\[
\text{MnO}_4^- + 8\text{H}^+ + 5\text{e}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} \\
\text{I}^- \rightarrow \frac{1}{2}\text{I}_2 + \text{e}^-
\]

............... mol of iodine molecules, I₂, are formed in the reaction.

Use this answer to calculate how many moles of sodium thiosulphate will react with the iodine molecules formed.

\[
2\text{S}_2\text{O}_3^{2-} \rightarrow \text{S}_4\text{O}_6^{2-} + 2\text{e}^- \\
\frac{1}{2}\text{I}_2 + \text{e}^- \rightarrow \text{I}^-
\]

............... mol of thiosulphate ions react with the iodine molecules formed in the reaction.
Calculate, to **3 significant figures**, the concentration in mol dm\(^{-3}\) of the sodium thiosulphate, Na\(_2\)S\(_2\)O\(_3\), in **FB 1**.

The concentration of sodium thiosulphate in **FB 1** is mol dm\(^{-3}\).

[5]

[Total: 12]
2 Read through the instructions before starting the experiment.

The relative molecular mass, \(M_r \), of a metal carbonate can be estimated by adding a weighed sample of the carbonate to a weighed excess of hydrochloric acid and measuring the mass of carbon dioxide evolved.

The tubes labelled FB 6 and FB 7 each contain the solid carbonate \(X_2\text{CO}_3 \). FB 8 is 2.0 mol dm\(^{-3}\) hydrochloric acid.

Method

(a) Follow the instructions below to determine the mass of carbon dioxide given off when \(X_2\text{CO}_3 \) reacts with an excess of hydrochloric acid.

- Use a measuring cylinder to transfer 75 cm\(^3\) of FB 8 into a 250 cm\(^3\) conical flask.
- Weigh the flask and acid FB 8.
- Weigh the tube labelled FB 6 which contains the carbonate \(X_2\text{CO}_3 \).
- Tip the contents of the tube FB 6 into the acid in the flask, a little at a time. This prevents loss of acid as spray from the vigorous reaction.
- When the reaction appears to be complete, swirl the flask and leave to stand for 2–3 minutes, then reweigh the flask and its contents.
- Reweigh the tube FB 6 and any residual carbonate not added to the acid.
- Rinse out and drain the flask.
- Repeat the whole experiment using tube FB 7.

In an appropriate form below record the following.

- all measurements of mass made
- the mass of the carbonate, \(X_2\text{CO}_3 \), added
- the mass of carbon dioxide given off

\[
\text{[mass of CO}_2 = (\text{initial mass of flask + acid}) + \text{(mass of carbonate)} - \text{(final mass of flask + contents)}\]

Results
Calculations

(b) From your results for each experiment calculate the mass of \(X_2\text{CO}_3\) that would produce 1.0 g of CO\(_2\).

With FB 6 \(\ldots\) g of CO\(_2\) are given off from \(\ldots\) g \(X_2\text{CO}_3\).

1.0 g of CO\(_2\) is given off from \(\ldots\) g \(X_2\text{CO}_3\).

With FB 7 \(\ldots\) g of CO\(_2\) are given off from \(\ldots\) g \(X_2\text{CO}_3\).

1.0 g of CO\(_2\) is given off from \(\ldots\) g \(X_2\text{CO}_3\). \[3\]

(c) For each experiment calculate the relative molecular mass, \(M_r\), of \(X_2\text{CO}_3\).

\[X_2\text{CO}_3(s) + 2\text{HCl(aq)} \rightarrow 2\text{XCl(aq)} + \text{CO}_2(g) + \text{H}_2\text{O(l)}\]

\([A_r: \text{C}, 12.0; \text{O}, 16.0]\]

\(M_r\) of \(X_2\text{CO}_3\) from the experiment with FB 6 is \(\ldots\) .

\(M_r\) of \(X_2\text{CO}_3\) from the experiment with FB 7 is \(\ldots\) . \[1\]

(d) Carbon dioxide is soluble in aqueous solutions and this can lead to an error in the molecular mass calculated.

From your observations on carrying out the experiments suggest another significant source of error. Explain the effect this will have on the measurements made and the molecular mass calculated.

\[\ldots\]\n
\[\ldots\][1]
(e) Some of the carbon dioxide given off in the reaction remains dissolved in the acid solution.

Suggest how you might modify the experimental method described to reduce or eliminate this error.

..
..
..
..

(f) Carry out the following instructions.

- Half fill each of two test-tubes with distilled water and place the tubes in a test-tube rack.
- To one test-tube add 1 spatula measure of powdered barium carbonate, \(\text{BaCO}_3 \).
- To the second test-tube add 1 spatula measure of \(\text{X}_2\text{CO}_3 \).
- Stopper each test-tube and shake vigorously.
- Half fill each of two boiling-tubes with FB 3, dilute sulphuric acid.
- To one boiling-tube add 1 spatula measure of powdered barium carbonate, \(\text{BaCO}_3 \).
- To the second boiling-tube add 1 spatula measure of \(\text{X}_2\text{CO}_3 \).
- **Do not attempt to stopper or shake either of these boiling-tubes.**

Record your observations in the table below.

<table>
<thead>
<tr>
<th></th>
<th>(\text{BaCO}_3)</th>
<th>(\text{X}_2\text{CO}_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB 3 dilute sulphuric acid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It is suggested that sulphuric acid could be used in place of hydrochloric acid in experiments to determine the \(M_r \) of metal carbonates.

Make use of your observations and your knowledge of the chemistry of barium, to explain why the use of sulphuric acid would not be appropriate if the carbonate is barium carbonate.

..
..
..

[Total: 12]
3 FB 9, FB 10 and FB 11 are aqueous solutions, each containing one of the cations listed on page 11 of the qualitative analysis notes.

You will react FB 9, FB 10 and FB 11 with aqueous sodium hydroxide, NaOH, and aqueous ammonia, NH₃, to identify the cations present in each of these solutions. You will also perform tests to identify the anions present in FB 9 and FB 10.

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Note that three of the cations listed on page 11 may give no precipitate with aqueous NaOH.

Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs.

Marks are not given for chemical equations.

(a) Pour 1 cm depth of FB 9, FB 10 and FB 11 into separate test-tubes. Stand the tubes in a test-tube rack and add aqueous sodium hydroxide, NaOH, a little at a time until the reagent is in excess. Repeat the test with aqueous ammonia, NH₃, as the reagent.

Record your observations in an appropriate form below.

(b) Using the observations above it is not possible to identify a single cation for any of the solutions. Use your observations and the qualitative analysis notes on page 11 to identify, for each solution, two or three cations which could be present.

FB 9 could contain the cations ..

FB 10 could contain the cations ...

FB 11 could contain the cations ...
(c) Use the qualitative analysis notes on page 11 to select further reagents or tests to identify precisely which cation is present in each of FB 9, FB 10 and FB 11.

Record in an appropriate form below,

- details of the reagents to be used,
- the tests to be carried out,
- your observations when the additional tests are carried out.

A boiling-tube must be used if any solution is to be heated.

Conclusion

FB 9 contains the cation ..

FB 10 contains the cation ..

FB 11 contains the cation ..
(d) **FB 9** and **FB 10** each contain one anion which is either a sulphate or a halide.

Use the qualitative analysis notes on page 12 to select appropriate reagents and tests to determine which anion is present in each solution.

Record in an appropriate form below,

- details of the reagents to be used,
- the tests to be carried out,
- your observations when the tests are carried out.

Conclusion

- **FB 9** contains the anion ..
- **FB 10** contains the anion ..

[6]

[Total: 16]
Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

<table>
<thead>
<tr>
<th>ion</th>
<th>reaction with</th>
<th>NaOH(aq)</th>
<th>NH₃(aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aluminium, Al³⁺(aq)</td>
<td>white ppt. soluble in excess</td>
<td>white ppt. insoluble in excess</td>
<td></td>
</tr>
<tr>
<td>ammonium, NH₄⁺(aq)</td>
<td>ammonia produced on heating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>barium, Ba²⁺(aq)</td>
<td>no ppt. (if reagents are pure)</td>
<td>no ppt.</td>
<td></td>
</tr>
<tr>
<td>calcium, Ca²⁺(aq)</td>
<td>white ppt. with high [Ca²⁺(aq)]</td>
<td>no ppt.</td>
<td></td>
</tr>
<tr>
<td>chromium(III), Cr³⁺(aq)</td>
<td>grey-green ppt. soluble in excess giving dark green solution</td>
<td>grey-green ppt. insoluble in excess</td>
<td></td>
</tr>
<tr>
<td>copper(II), Cu²⁺(aq)</td>
<td>pale blue ppt. insoluble in excess</td>
<td>blue ppt. soluble in excess giving dark blue solution</td>
<td></td>
</tr>
<tr>
<td>iron(II), Fe²⁺(aq)</td>
<td>green ppt. insoluble in excess</td>
<td>green ppt. insoluble in excess</td>
<td></td>
</tr>
<tr>
<td>iron(III), Fe³⁺(aq)</td>
<td>red-brown ppt. insoluble in excess</td>
<td>red-brown ppt. insoluble in excess</td>
<td></td>
</tr>
<tr>
<td>lead(II), Pb²⁺(aq)</td>
<td>white ppt. soluble in excess</td>
<td>white ppt. insoluble in excess</td>
<td></td>
</tr>
<tr>
<td>magnesium, Mg²⁺(aq)</td>
<td>white ppt. insoluble in excess</td>
<td>white ppt. insoluble in excess</td>
<td></td>
</tr>
<tr>
<td>manganese(II), Mn²⁺(aq)</td>
<td>off-white ppt. insoluble in excess</td>
<td>off-white ppt. insoluble in excess</td>
<td></td>
</tr>
<tr>
<td>zinc, Zn²⁺(aq)</td>
<td>white ppt. soluble in excess</td>
<td>white ppt. soluble in excess</td>
<td></td>
</tr>
</tbody>
</table>

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]
2 Reactions of anions

<table>
<thead>
<tr>
<th>ion</th>
<th>reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbonate, CO(_3)(^{-})</td>
<td>CO(_2) liberated by dilute acids</td>
</tr>
<tr>
<td>chromate(VI), CrO(_4)(^{-})(_2)</td>
<td>yellow solution turns orange with H(^+)(aq); gives yellow ppt. with Ba(^{2+})(aq); gives bright yellow ppt. with Pb(^{2+})(aq)</td>
</tr>
<tr>
<td>chloride, Cl(^{-})</td>
<td>gives white ppt. with Ag(^+)(aq) (soluble in NH(_3))(aq)); gives white ppt. with Pb(^{2+})(aq)</td>
</tr>
<tr>
<td>bromide, Br(^{-})</td>
<td>gives pale cream ppt. with Ag(^+)(aq) (partially soluble in NH(_3))(aq)); gives white ppt. with Pb(^{2+})(aq)</td>
</tr>
<tr>
<td>iodide, I(^{-})</td>
<td>gives yellow ppt. with Ag(^+)(aq) (insoluble in NH(_3))(aq)); gives yellow ppt. with Pb(^{2+})(aq)</td>
</tr>
<tr>
<td>nitrate, NO(_3) (^{-})</td>
<td>NH(_3) liberated on heating with OH(^-)(aq) and Al foil</td>
</tr>
<tr>
<td>nitrite, NO(_2)</td>
<td>NH(_3) liberated on heating with OH(^-)(aq) and Al foil; NO liberated by dilute acids (colourless NO → (pale) brown NO(_2) in air)</td>
</tr>
<tr>
<td>sulphate, SO(_4)(^{-})</td>
<td>gives white ppt. with Ba(^{2+})(aq) or with Pb(^{2+})(aq) (insoluble in excess dilute strong acids)</td>
</tr>
<tr>
<td>sulphite, SO(_3)(^{-})</td>
<td>SO(_2) liberated with dilute acids; gives white ppt. with Ba(^{2+})(aq) (soluble in excess dilute strong acids)</td>
</tr>
</tbody>
</table>

3 Tests for gases

<table>
<thead>
<tr>
<th>gas</th>
<th>test and test result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonia, NH(_3)</td>
<td>turns damp red litmus paper blue</td>
</tr>
<tr>
<td>carbon dioxide, CO(_2)</td>
<td>gives a white ppt. with limewater (ppt. dissolves with excess CO(_2))</td>
</tr>
<tr>
<td>chlorine, Cl(_2)</td>
<td>bleaches damp litmus paper</td>
</tr>
<tr>
<td>hydrogen, H(_2)</td>
<td>'pops' with a lighted splint</td>
</tr>
<tr>
<td>oxygen, O(_2)</td>
<td>relights a glowing splint</td>
</tr>
<tr>
<td>sulphur dioxide, SO(_2)</td>
<td>turns potassium dichromate(VI) (aq) from orange to green</td>
</tr>
</tbody>
</table>