Answer all the questions in the space provided.

1. Most submarines travel under water using electrical power from batteries. The German engineer Helmut Walter designed a diesel engine that could be used to propel a submarine beneath the surface of the sea. Instead of taking air from above the surface of the sea, Walter’s engine used hydrogen peroxide, H₂O₂, to provide oxygen for a conventional diesel engine.

Hydrogen peroxide may be catalytically decomposed to give water and oxygen.

(a) (i) What is meant by the term catalyst?
..
..

(ii) Construct a balanced equation for the decomposition of H₂O₂.
..
..

(b) (i) To which homologous series does C₁₅H₃₂ belong?
...

(ii) Use the equation above and your answer to (a)(ii) to calculate the amount, in moles, of H₂O₂, that will provide sufficient oxygen for the complete oxidation of one mole of C₁₅H₃₂.

amount of H₂O₂ = mol

[3]
A submarine equipped with a Walter engine used 212 tonnes of diesel fuel during an underwater voyage. The submarine also carried concentrated aqueous H\textsubscript{2}O\textsubscript{2}.

[1 tonne = 106 g]

(c) (i) Calculate the amount, in moles, of diesel fuel used during the underwater voyage.

amount of diesel fuel = mol

(ii) Use your answers to (b)(ii) and (c)(i) to calculate the mass, in tonnes, of hydrogen peroxide used during the underwater voyage.

mass of H\textsubscript{2}O\textsubscript{2} = tonnes

[4]

(d) The exhaust products of the Walter engine were passed into the sea.

What would happen to them?

... [1]

[Total: 11]
Ketene, \(\text{C}_2\text{H}_2\text{O} \), is a member of a class of unsaturated organic compounds that is widely used in pharmaceutical research for the synthesis of organic compounds.

\[
\text{CH}_2\text{=C=O}
\]

ketene

(a) (i) Suggest values for the H-C-H and C=C=O bond angles in ketene.

H-C-H …………………………………… C=C=O ……………………………………

(ii) By considering the structure of the molecule, suggest why the name *ketene* is used.

..
..
..
..
.. [3]

(b) Ketene burns completely in air to form carbon dioxide and water.

(i) Write a balanced equation for this reaction.

..

(ii) Use your equation to calculate the volume of \(\text{CO}_2 \), in dm\(^3\), measured at room temperature and pressure, which will be formed when 3.5 g of ketene are burned in an excess of air.

Give your answer to **two** significant figures.

\[
\text{volume of CO}_2 = \text{......................... dm}^3 \]

[4]
(c) (i) Define the term standard enthalpy change of formation.

..
..
..

(ii) Use the data below to calculate the standard enthalpy change of formation of ketene.

<table>
<thead>
<tr>
<th>Standard enthalpy change of formation</th>
<th>ΔH°/kJ mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard enthalpy change of formation of CO_2</td>
<td>-395</td>
</tr>
<tr>
<td>standard enthalpy change of combustion of H_2</td>
<td>-286</td>
</tr>
<tr>
<td>standard enthalpy change of combustion of $CH_2=CH=O$</td>
<td>-1028</td>
</tr>
</tbody>
</table>

(d) Ketene can be converted directly into ethanoic acid, CH_3CO_2H, by reaction with a compound A.

Suggest the identity of A.

..

[Total: 14]
Chlorine gas is manufactured by the electrolysis of brine using a diaphragm cell.

(a) Write half-equations, including state symbols, for the reactions occurring at each of the electrodes of a diaphragm cell.

\[
\text{anode: } \quad 2H_2O(s) \rightarrow O_2(g) + 4H^+(aq) + 4e^- \\
\text{cathode: } \quad 2Cl^-(aq) + 2e^- \rightarrow Cl_2(g)
\]

(b) In the diaphragm cell, the anode is made of titanium and the cathode is made of steel. Suggest why steel is never used for the anode.

(c) One important product made in the diaphragm cell is formed in aqueous solution.

(i) What substance is produced in aqueous solution in the diaphragm cell?

(ii) Explain, with the aid of appropriate half-equation(s), how this compound is formed by electrolysis.

(d) Chlorine is very reactive and will form compounds by direct combination with many elements. Describe what you would see when chlorine is passed over separate heated samples of sodium and phosphorus. In each case write an equation for the reaction.

sodium:

phosphorus:

(e) Magnesium chloride, MgCl_2, and silicon tetrachloride, SiCl_4, each dissolve in or react with water.

Suggest the approximate pH of the solution formed in each case.

MgCl_2 .. SiCl_4 ..

Explain, with the aid of an equation, the difference between the two values.

..
..
..
..
..
[5]

[Total: 15]
Organic chemistry is the chemistry of carbon compounds. The types of organic reactions that you have studied are listed below.

- Addition
- Elimination
- Hydrolysis
- Oxidation
- Reduction
- Substitution

Addition and substitution reactions are further described as follows.

- Electrophilic
- Nucleophilic
- Free radical

Complete the table below.

Fill in the central column by using **only** the types of reaction given in the lists above. Use **both** lists when appropriate.

In the right hand column give the name(s) or formula(e) of the reagent(s) you would use to carry out the reaction given.

<table>
<thead>
<tr>
<th>Organic reaction</th>
<th>Type of reaction</th>
<th>Reagent(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃CHO → CH₃CH(OH)CN</td>
<td>Addition</td>
<td></td>
</tr>
<tr>
<td>CH₃CH₂CH₂CH₃ → CH₃CH₂CHBrCH₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃CH(OH)CH₃ → CH₃CH=CH₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃CH=CH₂ → CH₃CH(OH)CH₂OH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Total: 10]
An organic ester, B, has the empirical formula $\text{C}_2\text{H}_4\text{O}$. An experiment by a student in a college gave a value of 87.5 for M_r of B.

(a) What is the molecular formula of B?

......................... [1]

(b) In the boxes below, draw the structural formulae of four isomers of B that are esters.

<table>
<thead>
<tr>
<th>W</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>
The student hydrolysed his sample of B by heating with aqueous mineral acid and then separating the alcohol, C, that was formed. He heated the alcohol C under reflux with acidified dichromate(VI) ions and collected the product D.

A sample of D gave an orange precipitate with 2,4-dinitrophenylhydrazine reagent. A second sample of D gave no reaction with Tollens’ reagent.

(c) (i) What group does the reaction with 2,4-dinitrophenylhydrazine reagent show to be present in D?

..

(ii) What does the result of the test with Tollens’ reagent show about D?

..

(iii) What is the structural formula of the alcohol C?

(iv) Which of your esters, W, X, Y, or Z has the same structure as that of the ester B?

.................[4]

(d) Which, if any of your esters, W, X, Y, or Z is chiral? Explain your answer.

...[1]

[Total: 10]