MARK SCHEME for the October/November 2007 question paper

9701 CHEMISTRY

9701/02 Paper 2 (Theory 1), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.
1 (a)

\[
\begin{align*}
\text{spherical (1)} & \quad \text{larger spherical (1)} \\
\text{double lobes along the x-axis (1)} & \quad \text{[3]}
\end{align*}
\]

(b) (i) attraction between bonding electrons and nuclei (1)
attraction is electrostatic (1)

(ii) \(H_2 \) s-s overlap clearly shown (1)
\begin{align*}
\text{must not be normal dot/cross diagram} & \quad \text{(1)}
\end{align*}

HCl s-p overlap clearly shown (1)
\begin{align*}
\text{overlap must involve s and p orbitals} & \quad \text{(1)}
\end{align*} [4]

(c) (i) bonding electrons are unequally shared or (1)
the molecule has a dipole/\(\delta^+ \) and \(\delta^- \) ends to molecule (1)

(ii) the H and Cl atoms have different electronegativities (1)
\begin{align*}
\text{or chlorine is more electronegative than hydrogen} & \quad \text{(1)}
\end{align*} [2]
(d) **allow** two ‘sausages’ above and below the C-C axis **or** two p orbitals **overlapping** sideways to form one (localised) \(\pi \) bond over two carbon atoms (1) [1]

(e) \(\Delta H_f = 2(-393.7) + 2(-285.9) - (-1411) \)

\[= + 51.8 \text{ kJ mol}^{-1} \text{(units given in qu.)} \] (3)

penalise errors: no 2 for –393.7
no 2 for –285.9
wrong sign for –(-1411) [3]

[Total: 13]

2 (a) \(P_4(s) + 10Cl_2(g) \rightarrow 4PCl_6(s) \)

or \(2P(s) + 5Cl_2(g) \rightarrow 2PCl_5(s) \)

equation (1) [2]

state symbols (1)

(b) (i) giant ionic lattice (may be in diag.) (1)

strong ionic bonds (1)

(ii) simple molecular **or** discrete molecules (may be shown in a diagram) (1)

with **weak** intermolecular forces **or** **weak** van der Waals’ forces (1) [4]

(c) \(SiC_4 + 2H_2O \rightarrow SiO_2 + 4HCl \)

or \(SiC_4 + 4H_2O \rightarrow Si(OH)_4 + 4HCl \)

or \(SiC_4 + 4H_2O \rightarrow SiO_2\cdot2H_2O + 4HCl \) (1) [1]
(d) NaCl pH is 7 allow neutral (1)

PCl₅ pH is between 1 and 4
do not allow acidic (1) [2]

(e) (i) 460 K Al₂Cl₆ (1)

1150 K AlCl₃ (1)

(ii) correct dot-and-cross diagram for AlCl₃ (1)

(iii) correct displayed structure for Al₂Cl₆ (1)
two correct co-ordinate bonds (1)

[Total: 14]

3 (a) P₄ (1)

S₈ (1)

Cl₂ (1) [3]

(b) (i) highest S₈ P₄ Cl₂ lowest allow S ... P ... Cl or names (1)

(ii) from S₈ to P₄ to Cl₂

there are fewer electrons in each molecule (1)
hence weaker van der Waals' forces (1) [3]
(c) (i) \(S_2Cl_2 = (2 \times 32.1) + (2 \times 35.5) = 135.2\)

\[n(S_2Cl_2) = \frac{2.7}{135.2} = 0.0199 = 0.02\] (1)

\[0.02 \text{ mol } S_2Cl_2 \rightarrow \frac{0.96}{32.1} = 0.03 \text{ mol } S\] (1)

\[1.0 \text{ mol } S_2Cl_2 \rightarrow \frac{0.03 \times 1.0}{0.02} = 1.5 \text{ mol } S\] (1)

(iii) \(2S_2Cl_2 + 3H_2O \rightarrow 3S + H_2SO_3 + 4HCl\)

correct products (1) balanced equation (1) [4]

(d) oxidation product is \(H_2SO_3\) (1)

reduction product is \(S\) (1) [2]

[Total: 12]

4 (a)

\[
\begin{align*}
\text{cis} & \quad \text{trans} \\
\text{H atoms must be shown.} & \\
\text{Structure must not contain any CH}_3\text{ groups} & (1) [1]
\end{align*}
\]

(b)

\[
\begin{align*}
\text{cis} & \quad \text{trans} \\
\text{H}_3C & \quad \text{H}_3C \\
\text{H} & \quad \text{H} \\
\text{C=}[& \quad \text{C=} \\
\text{H}_2C & \quad \text{H}_2C \\
\text{H}_3C & \quad \text{H}_3C \\
\text{H} & \quad \text{H}
\end{align*}
\]

(c) \(CH_3CH(OH)CH_2CH_2CH_3\) (1) \(CH_3CH_2CH(OH)CH_2CH_3\) (1) [2]
(d) correct compound
 correct mirror object/mirror image relationship in 3D (1) [2]

(e) e.g. cyclopentane structure
 allow methylcyclobutane or dimethylcyclopropane (1) [1]

(f) e.g.
 two repeat units must be shown
 relative positions of –CH₃ and –C₂H₅ may differ from those shown above (1) [1]

[Total: 9]

5 (a) (i) Cr₂O₇²⁻/H⁺ allow MnO₄⁻/H⁺ (1)
 (ii) from orange to or purple to colourless green or green/blue (1) [2]

(b) (i) to ensure complete oxidation of –CH₂OH
 or to keep reactants in the reaction flask (1)
 (ii) CH₃CHO/ethanal (1) [2]

(c) (i) CH₃I/iodomethane (1)
 (ii) nucleophilic substitution or hydrolysis (1) [2]
(d) step I

red $\text{P} + I_2$ or HI(aq) or $\text{KBr/conc H}_3\text{PO}_4$ or PI_3 (1)

heat **but** room temperature for PI_3 (1)

step II

KCN in aqueous ethanol (1)

in aqueous ethanol, heat under reflux (1)

allow aqueous ethanol in either place

step III

aqueous mineral acid (**not** nitric acid) (1)

or NaOH(aq) then aqueous mineral acid (1)

heat (1) [6]

[Total: 12]