GCE Advanced Subsidiary Level

MARK SCHEME

MAXIMUM MARK : 25

SYLLABUS/COMPONENT : 9701 /3

CHEMISTRY (PRACTICAL (AS))
N.B. Boxed references within this marking scheme relate to the accompanying booklet of Standing Instructions

1

Tables 1.1 and 1.2

Give **one mark** if all weighings are to 2 decimal places or better.

Give **one mark** if the mass of FA 1 recorded in Table 1.1 is between 2.00g and 2.50g inclusive.

Give **one mark** if there is evidence of reheating and reweighing the tube.

Give **one mark** if two masses of tube + FA 1 after heating are within 0.05 g.

Withhold one of these marks if

- there is an error in subtraction
- the mass of empty tube differs between the two tables
- the smallest mass of tube + FA 1 after heating was not used in calculating the residual mass of FA 1.

Accuracy

Supervisor’s Script

Check and correct any errors in subtraction

Calculate \[\frac{\text{mass lost on heating}}{\text{mass of FA 1 after heating}} \] correct to 2 decimal places.

Record this as a ringed total on the front of the Supervisor’s script. The value of this ratio \(\approx 1.05 \)

If there is a significant difference in the value obtained for the Supervisor it may suggest an impure sample of MgSO₄·7H₂O has been used or the wrong salt distributed.

Candidate Scripts

Check and correct any errors in subtraction

Calculate \[\frac{\text{mass lost on heating}}{\text{mass of FA 1 after heating}} \] correct to 2 decimal places.

Record this ratio, correct to 2 decimal places, below Table 1.2.

Compare the ratio obtained from the candidate’s results (corrected where necessary) with the theoretical value of 1.05.

Accuracy marks are awarded for differences between the ratios as follows:

<table>
<thead>
<tr>
<th>Mark</th>
<th>Difference in Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Up to 0.03</td>
</tr>
<tr>
<td>5</td>
<td>0.03+ to 0.04</td>
</tr>
<tr>
<td>4</td>
<td>0.04+ to 0.05</td>
</tr>
<tr>
<td>3</td>
<td>0.05+ to 0.07</td>
</tr>
<tr>
<td>2</td>
<td>0.07+ to 0.10</td>
</tr>
<tr>
<td>1</td>
<td>0.10+ to 0.15</td>
</tr>
<tr>
<td>0</td>
<td>Greater than 0.15</td>
</tr>
</tbody>
</table>
In all calculations, ignore evaluation errors if working is shown

(d) Ignore

(i) Calculated mass of anhydrous magnesium sulphate

and

Give one mark for (ii) Correctly calculated mass of water

1

(e) Give one mark for

moles of water = \(\frac{\text{mass of water}}{18} \)

(If an incorrect \(M_r \) is used this mark is not awarded but subsequent marks may be given)

1

(f) Give one mark for

moles of \(\text{XSO}_4 \) = \(\frac{\text{Answer to (e)}}{7} \)

1

(g) Give one mark for

\(M_r \) of \(\text{XSO}_4 \) = \(\frac{\text{Answer to (d)(i)}}{\text{Answer to (f)}} \)

No Units

1

(h) Give one mark for

answer to (g) - 96

No Units

(Do not penalise twice)

1

Total for Question 1 15
FA 2 is a solution containing Mn\(^{2+}\), Zn\(^{2+}\), SO\(_4^{2-}\), NO\(_3^-\).

<table>
<thead>
<tr>
<th>Test</th>
<th>Observations</th>
<th>Deductions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>To 3 cm depth of FA 2 in a boiling-tube, add an equal depth of dilute aqueous sodium hydroxide. Cautiously warm the tube.</td>
<td>Off-white, buff or light brown precipitate. (Not dirty brown, brown or any yellow or red in the colour) [1]</td>
</tr>
<tr>
<td>(b)</td>
<td>Filter the mixture from (a) and collect the filtrate. Leave the residue in the filter paper and observe again after several minutes.</td>
<td>Allow precipitate colour here if not given in (a). Deduction in (a) can be given from observation here. Precipitate turns brown or darkens (No red or yellow in colour) [1]</td>
</tr>
<tr>
<td>(c)</td>
<td>Place 2 cm depth of the filtrate from (b) in a test-tube and add dilute nitric acid, drop by drop, until no further change is seen.</td>
<td>White precipitate forms and re-dissolves</td>
</tr>
<tr>
<td>(d)</td>
<td>Place the remainder of the filtrate from (b) in a boiling-tube. Add a piece of aluminium foil. Cautiously warm the tube.</td>
<td>Gas turns red litmus blue or gives white smoke with HCl or Ammonia gas [1]</td>
</tr>
<tr>
<td>(e)</td>
<td>To 3 cm depth of FA 2 in a test-tube, add an equal depth of dilute aqueous ammonia. Filter the mixture and add dilute nitric acid, drop by drop, until no further change is seen.</td>
<td>The observation marks from (a) or (b) can be given here. White precipitate forms and re-dissolves</td>
</tr>
<tr>
<td>(f)</td>
<td>To 2 cm depth of FA 2 in a test-tube, add dilute hydrochloric acid followed by aqueous barium chloride.</td>
<td>No brown gas.................................</td>
</tr>
<tr>
<td>(g)</td>
<td>To 2 cm depth of FA 2 in a test-tube, add dilute nitric acid followed by aqueous silver nitrate.</td>
<td>No brown gas</td>
</tr>
</tbody>
</table>

Summary (Only award these marks if there is supporting evidence in the individual tests)
FA 3 contains the cations Mn\(^{2+}\) and Zn\(^{2+}\) and the anions SO\(_4^{2-}\) and NO\(_3^-\)
Total of 12 scoring points

If the mark is in excess of 10 cross through the mark and record 10 max.
Total for Question 2 is 10 and for the Paper 25.