This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.
1 (a) \[[H^+] = \sqrt{(0.05 \times 5.6 \times 10^{-4})} = 5.29 \times 10^{-3} \text{ mol dm}^{-3} \]
\[\text{pH} = -\log_{10}(5.29 \times 10^{-3}) = 2.3 \]

(b) (i) (Brønsted-Lowry) acid-base proton transfer, neutralisation, exothermic, reversible, equilibrium

(ii)

(iii) (in NH}_4\text{F):}
covalent: between N & H
dative: between N & H
ionic: between NH}_4^+ & F^- or N^- & F^- or ammonium and fluoride (i.e. in words)
or between (oppositely charge) ions

(iv) (reverse reaction, remember)
high temperature, because reverse reaction is endothermic
low pressure, because reverse reaction causes an increase in no. of gaseous molecules
or an increase in partial pressure/volume.

(c) (i) 4NH}_3 + CuS + 2O}_2 \rightarrow [Cu(NH}_3]_4\text{SO}_4

(ii) deep/dark/royal blue or purple [NOT violet]

(iii) deep blue colour would change to light blue [NOT intensity of colour decreases]
\[\Rightarrow \text{hexaquocopper(II) ion or } [\text{Cu(H}_2\text{O})_6\text{]}^{2+} \text{ or } [\text{Cu(H}_2\text{O})_a\text{NH}_3]_a^{2-} \text{, where } a = 4 \text{ or } 6 \]
or ligand exchange (of NH}_3) by H}_2O

(d) ligand exchange, substitution, displacement, replacement [IN WORDS]
(use of named ligands are OK instead of ‘ligand’. e.g. "water is displaced by chloride")

formula of anion (see below for possibilities)
balanced equation. e.g.\[[\text{Cu(H}_2\text{O})_6]^{2+} + n\text{Cl}^- \rightarrow [\text{Cu(H}_2\text{O})_{6-n}\text{Cl}_n]^{2-n} + n\text{H}_2\text{O} \]

(Allow n=1 up to n=6. Also allow [CuCl}_4]^{2-} as product. Examples from many possible are:
\[[\text{Cu(H}_2\text{O})_6]^{2+} + 2\text{Cl}^- \rightarrow [\text{Cu(H}_2\text{O})_4]\text{Cl}_2] + 2\text{H}_2\text{O} \]
\[[\text{Cu(H}_2\text{O})_4]^{2+} + 4\text{Cl}^- \rightarrow [\text{CuCl}_4]^{2-} + 6\text{H}_2\text{O} \]
equation could include HC}_1 on the LHS, for example:
\[[\text{Cu(H}_2\text{O})_6]^{2+} + 4\text{HC}1 \rightarrow \text{H}_2\text{CuCl}_4 + 2\text{H}^+ + 6\text{H}_2\text{O} \text{ or } \rightarrow \text{CuCl}_4^{2-} + 4\text{H}^+ + 6\text{H}_2\text{O} \]

[Total: 18 max 17]
2 (a) (i)

<table>
<thead>
<tr>
<th>Melting Point</th>
<th>Electrical Conductivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>medium</td>
<td>medium</td>
</tr>
<tr>
<td>low</td>
<td>low</td>
</tr>
</tbody>
</table>

(ii) m. pt. trend: (from) giant/macro molecular/covalent to metallic bonding
(or implied from at least two specific examples, e.g. diamond and tin)
(mention of simple covalent anywhere negates this mark)
conductivity trend: increasing delocalisation of electrons (down the group)
(or e− are more free-moving)
(or implied from at least two examples, e.g. Si is semiconductor, lead has delocalised e−)

(b) (i) heat PbO\textsubscript{2}, or T > 200°C or \(\Delta\) on arrow: PbO\textsubscript{2} \(\rightarrow\) PbO + \(\frac{1}{2}\)O\textsubscript{2} (N.B. \(\frac{1}{2}\)O\textsubscript{2} NOT [O])

(ii) (burning CO in air produces CO\textsubscript{2}): CO + \(\frac{1}{2}\)O\textsubscript{2} \(\rightarrow\) CO\textsubscript{2}
blue flame (ignore ref to limewater test)

(iii) e.g. SnCl\textsubscript{2}(aq) will turn KMnO\textsubscript{4} from purple to colourless
\[5\text{Sn}^{2+} + 2\text{MnO}_4^- + 16\text{H}^+ \rightarrow 5\text{Sn}^{4+} + 2\text{Mn}^{2+} + 8\text{H}_2\text{O}\]

or SnCl\textsubscript{2}(aq) will turn K\textsubscript{2}Cr\textsubscript{2}O\textsubscript{7} from orange to green
\[3\text{Sn}^{2+} + \text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ \rightarrow 3\text{Sn}^{4+} + 2\text{Cr}^{3+} + 7\text{H}_2\text{O}\]

or SnCl\textsubscript{2}(aq) will turn Fe3+ from orange/brown/yellow to green/colourless
\[\text{Sn}^{2+} + 2\text{Fe}^{3+} \rightarrow \text{Sn}^{4+} + 2\text{Fe}^{2+}\]

or SnCl\textsubscript{2}(aq) will turn Cu2+(aq) from blue to colourless or give a pink/brown/copper-coloured ppt.
\[\text{Sn}^{2+} + \text{Cu}^{2+} \rightarrow \text{Sn}^{4+} + \text{Cu}\]

Other possible oxidants (Eo must be > +0.2V) include: S\textsubscript{2}O\textsubscript{8}2−, H\textsubscript{2}O\textsubscript{2}, Cl\textsubscript{2}, Br\textsubscript{2}, I\textsubscript{2} and Ag+.
No observations with the first three of these, but this should be stated explicitly, e.g. “no colour change”.

[Total: 11 max 10]
(a) \[L = \frac{F}{e} \text{ or } F = Le \]

(b) (i)

\[\text{allow the conventional symbol } \begin{array}{c} \text{+} \\ \text{P.S.} \\ \text{–} \end{array} \text{ to represent } \begin{array}{c} \text{+} \\ \text{–} \end{array} \text{ (the "P.S." is not required)} \]

correct cell (2 electrodes + PS circuit) [1]
ammeter in series [1]
anode and cathode of the right polarity [IN WORDS] [1]
\(\text{CuSO}_4(\text{aq}) \text{ or CuCl}_2(\text{aq}) \text{ or Cu}^{2+}(\text{aq}) \text{ or soln or } 1 \text{ mol dm}^{-3} \) [1]

(ii) \[n(\text{Cu}) = \frac{(52.542-52.243)}{63.5} \times 10^{-3} \text{ mol (4.67} \times 10^{-3}) \]
\[n(e^-) \text{ required} = 4.71 \times 10^{-3} \times 2 = 9.42 \times 10^{-3} \text{ mol (9.34} \times 10^{-3}) \] ecf [1]

amount of electricity passed = \(0.5 \times 30 \times 60 = 900 \text{ C} \) [1]
no. of electrons passed = \(900/1.6 \times 10^{-19} = 5.625 \times 10^{21} \) ecf [1]

no of electrons/n(e–) = \(L = 5.625 \times 10^{21}/9.42 \times 10^{-3} = 5.97 \times 10^{23} \text{ mol}^{-1} (6.02 \times 10^{23}) \) ecf [1]

(values in italics are if candidate has used \(A_r = 64 \), not 63.5. No last mark if not 3 s.f.: correct ans = [5]) [9]

(c)

<table>
<thead>
<tr>
<th>compound</th>
<th>product at anode</th>
<th>product at cathode</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgF</td>
<td>O\textsubscript{2}</td>
<td>Ag</td>
</tr>
<tr>
<td>FeSO\textsubscript{4}</td>
<td>O\textsubscript{2}</td>
<td>H\textsubscript{2}</td>
</tr>
<tr>
<td>MgBr\textsubscript{2}</td>
<td>Br\textsubscript{2}</td>
<td>H\textsubscript{2}</td>
</tr>
</tbody>
</table>

6 correct \(\Rightarrow [5] \)
5 correct \(\Rightarrow [4] \) etc.

Names can be used instead of symbols. If the atomic symbol (e.g. Br or H or O) is used instead of the molecular formula (e.g. Br\textsubscript{2} etc.) then deduct [1] mark only for the whole table. [5]

[Total: 15]
4 (a) (i) (allow displayed, structural or skeletal formula)

\[\begin{array}{c}
\text{chain} \\
\text{repeat unit}
\end{array} \]

[1]

(ii) C should be \(\text{CH}_2=\text{CHOH} \) (or skeletal formula) [1]

(iii) C is \(\text{CH}_3\text{CH}=\text{O} \) (or skeletal formula) [1]

(iv) e.g. add (2,4-)DNPH or DNP or Brady’s reagent ecf [1]

orange or red ppt forms (NOT yellow) ecf [1]

(or could use Fehling’s or Tollens’,
\(\text{H}^+ + \text{Cr}_2\text{O}_7^{2-} \): orange to green, or \(\text{H}^+ + \text{MnO}_4^- \): purple to colourless) [6]

(b) (i) (allow displayed, structural or skeletal formula)

\[\begin{array}{c}
\text{D}
\end{array} \]

correct repeat unit bracketed (any 3 atoms in chain) [1]

(ii) ester [1]

(iii) E is \(\text{CH}_3\text{CH}_2\text{CH(OH)CO}_2\text{H} \) (or skeletal structure etc.) (2-hydroxybutanoic acid) [1]

allow ecf here from the formula of the repeat unit shown in (b)(i)

(iv) condensation (polymerisation) [1]

(v) they have the same “molecular” formula or \(\text{C}_4\text{H}_6\text{O}_2 \) (do NOT allow empirical formula) or same no. and type of atoms or same functional group or both are esters or they are isomers [1] [5]
(c) (i) optical isomerism (or chiral) [1]

(ii)

\[
\begin{align*}
\text{F} & \quad \text{CO}_2\text{H} \\
\text{G} & \quad \text{CO}_2\text{H}
\end{align*}
\]

(letters may be reversed) (allow ecf from E, also allow ecf for G from F) [1] + [1]

cis-trans or geometrical isomerism [1] [4]

[Total: 15]
5 (a) acidity: ethanol < water
 due to +ve inductive effect of C₂H₅ group or C₂H₅ gives e⁻ to oxygen or intensifies e⁻ (in O-H bond) [1]
acidity: phenol > water [1]
due to stabilisation of the anion/anionic charge or makes the anion less basic [1] [4]

(b)

![Chemical reactions](image)

(c) H is

reagents & conditions:
step 1 dilute HNO₃ (dilute, not just ‘aq’. H₂SO₄ negates) [1]
step 2 Sn/SnCl₂/Fe + HCl or H₂ + Ni/Pd (NOT H₂ + Pt. NOT LiAlH₄ or NaBH₄) [1]
step 3 CH₃COCl or (CH₃CO)₂O (‘aq.’ negates) [1] [4]

[Total: 13]
6 (a) They are polar/ionic or can hydrogen-bond or are hydrophilic. (NOT ‘contain the –OH group, on its own) [1]

(b) (i) Primary structure is the sequence/order of amino acids [1]
Secondary structure is the H-bonding between C=O & N-H or peptide group/bonds [1]
Tertiary structure gives the (overall) 3D structure/shape/folding/globularity (not ‘coiling’ on its own)
or mention of at least one method of forming the 3° structure, e.g.; hydrogen bonding
between R-groups/side chains; –S-S- bridges; van der Waals forces; ionic interactions
[1]

(ii) The 3° structure provides a complementary shape to that of the substrate
or it provides the right/specifically shaped cavity for the substrate. (NOT just ‘a cleft’)
or provides nearby groups to aid the reactions of the substrate (owtte) [1]

(iii) Two conditions out of the following:
(a) Increased temperature
(b) Decreased temperature
(c) Change in pH
(d) Addition of heavy metals (or specified, e.g. Hg/Ag)
(e) Addition of inhibitors (competitive or non-competitive)
Suitable reasons:
(i) 3D structure changes shape/is deformed/is broken or R-R interactions (or a specific
example, e.g. H-bonding) are broken
(ii) inhibitor occupies active site.
(iii) either fewer substrate molecules with E > Eₐ or fewer successful collisions [2]

(c) (i)

![Diagram of pH vs. enzyme activity]

left hand peak labelled as pepsin [1]
right hand peak labelled as trypsin [1]
(Correct enzymes, but wrong way round, scores [1] only)

(ii) Peak between pH 6 and pH 8, and correct name (amylase) [1]

[Total: 10]
7 (a)
<table>
<thead>
<tr>
<th>Number</th>
<th>Process</th>
<th>Correct sequence (numbers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Place samples on agarose gel</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>Use polymerase chain reaction</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>Label with radioactive isotope</td>
<td>6</td>
</tr>
<tr>
<td>D</td>
<td>Extract DNA</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>Use restriction enzyme</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>Carry out electrophoresis</td>
<td>5</td>
</tr>
</tbody>
</table>

mark as follows:
- if **A** is **just** before **F** (i.e. A = 4, F = 5 or A = 5, F = 6) [1] mark
- if D = 1 and E = 2 [1] mark
- if C = 6 [1] mark

(b) (i) P or phosphorus (NOT phosphate) [1]

(ii) Phosphate groups are present in DNA or it makes the DNA fragments/bands etc. visible or locates their position or identifies them on a photographic plate etc. (NOT because it’s radioactive or makes the bands coloured) [1] [2]

(c) (i) Yes, all 4 children share one/some band (or match/gene/fragment/part/DNA/amino acid) with the mother’s (DNA) (NOT the general statement “matches the mother’s DNA”) [1]

(ii) Child 2, since he/she shares none of the bands of father’s DNA/fingerprint or their fingerprint/DNA does not match the father’s DNA (the general “match” is OK here) [1] [2]

(d) (i) Compare DNA fingerprint for each fragment (can be read into use of the word ‘same’ below)
Match the DNA patterns to determine which came from which skin [1]

(ii) A named example of biological origin (N.B. a material, not a whole organism) [1]
e.g. leather (= bull skin), pollen, fish scales, leaves, seeds, feathers, hair, blood, textiles (or a named one like wool or silk or cotton or linen/flax), wood.
(N.B. NOT human or goat skin, also not metal, pottery or stone. If more than one material is given, mark the first one) [3]

[Total: 10]
8 (a) Range should be from $10^{-6} - 10^{-7}$ (the left hand arrow) to $10^{-8} - 10^{-9}$ (the right hand arrow)

(b) Forms of the *same element* (or of *carbon*, since carbon is the context of the question) with different structures/arrangements of atoms allow ‘different molecular structure’, but not structural formula. Any mention of ‘compound’ negates the mark.

(c) Nanoparticles are smaller than (animal) cells or they can pass through the cell membrane or pass into/between cells. Drugs can be bound to/enclosed by the nanoparticle.

(d) (i) Reduction/redox

(ii) M_r of chalcopyrite is $63.5 + 56 + 64 = 183.5$

Mass of copper present is 63.5

Hence percentage of copper present = $\frac{63.5 \times 100}{183.5} = 34.6\%$

(if A_r(Cu) = 64 is used, ans = 34.8\%. allow 34–35\%)

(iii) If the ore contains 2\% of chalcopyrite by mass, calculate how much copper is produced from each tonne of ore.

1 tonne = 1000 kg
1 tonne of chalcopyrite would produce 346 kg of copper
1 tonne of 2 \% ore would produce 346×0.02 or *6.9* kg of copper ecf from (d)(ii) (accept 7.0 or 7 kg)

answer may be given as 7000 g or 7×10^{-3} tonnes. If no units are given, assume they are tonnes, and mark accordingly

(iv) By displacement with a metal (the following specified metals higher than Cu in the ECS may be used: Fe, Zn, Sn, Pb, Al, Mg. (NOT Ca, Li, Na, K etc.) or with a suitable non-metallic reducing agent, e.g. SO$_2$ or Sn$^{2+}$, but not something that wouldn’t react, like H$_2$ or By electrolysis (with carefully controlled voltage)

[Total: 10]