READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
You are advised to show all working in calculations.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 11 and 12.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 12 printed pages.
1 You are provided with the following.

FB 1 is 0.023 mol dm\(^{-3}\) potassium manganate(VII), KMnO\(_4\).

FB 2 is aqueous ethanedioic acid, H\(_2\)C\(_2\)O\(_4\), made by dissolving the hydrated salt, H\(_2\)C\(_2\)O\(_4\).2H\(_2\)O.

You are also provided with the following.

1.0 mol dm\(^{-3}\) sulfuric acid, H\(_2\)SO\(_4\)
distilled water

You are required to determine the concentration, in g dm\(^{-3}\), of hydrated ethanedioic acid, H\(_2\)C\(_2\)O\(_4\).2H\(_2\)O, in FB 2.

Dilution of FB 2

(a) By using a burette, measure between 42.50 cm\(^3\) and 43.00 cm\(^3\) of FB 2 into the 250 cm\(^3\) graduated flask, labelled FB 3.

Record your burette readings and the volume of FB 2 added to the flask in the space below.

Make up the contents of the flask to the 250 cm\(^3\) mark with distilled water. Place the stopper in the flask and mix the contents thoroughly by slowly inverting the flask a number of times.

Titration

Fill a second burette with FB 1.

Pipette 25.0 cm\(^3\) of FB 3 into a conical flask. Use the measuring cylinder provided to add to the flask 25 cm\(^3\) of 1.0 mol dm\(^{-3}\) sulfuric acid and 40 cm\(^3\) of distilled water.

Put the thermometer in the flask and heat the solution until the temperature is just over 65 °C.

Carefully remove the thermometer and place the hot flask under the burette. If the neck of the flask is too hot to hold safely, use a folded paper towel to hold the flask.

Run in 1 cm\(^3\) of FB 1. Swirl the flask until the colour of the potassium manganate(VII) has disappeared then continue the titration as normal until a permanent pale pink colour is obtained. This is the end-point.

If a brown colour appears during the titration, reheat the flask to 65 °C. The brown colour should disappear and the titration can be completed as above.

If the brown colour does not disappear on reheating, discard the solution and start the titration again.

Perform a rough (trial) titration and sufficient further titrations to obtain reliable results.

Record your titration results in the space below. Make certain that your recorded results show the precision of your working.
(b) From your titration results obtain a volume of FB 1 to be used in your calculations. Show clearly how you obtained this volume.

[1]

Calculations
Show your working and appropriate significant figures in the final answer to each step of your calculations.

(c) Calculate how many moles of KMnO₄ were run from the burette into the conical flask.

…………………… mol of KMnO₄ were run from the burette into the conical flask.

Put the correct number of electrons into each of the following half-equations to balance the electrical charges.

\[\text{MnO}_4^- + 8\text{H}^+ + \text{e}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} \]

\[\text{C}_2\text{O}_4^{2-} \rightarrow 2\text{CO}_2 + \text{e}^- \]

Calculate how many moles of ethanedioate ions, C₂O₄²⁻, reacted with the KMnO₄ run from the burette.

…………………… mol of ethanedioate ions reacted with the KMnO₄ run from the burette.

Calculate the concentration, in mol dm⁻³, of C₂O₄²⁻ in FB 3.

The concentration of C₂O₄²⁻ in FB 3 is ………………… mol dm⁻³.

Calculate the concentration, in mol dm⁻³, of C₂O₄²⁻ in FB 2.

The concentration of C₂O₄²⁻ in FB 2 is ………………… mol dm⁻³.
Calculate the concentration, in g dm$^{-3}$, of H$_2$C$_2$O$_4$.2H$_2$O in FB 2.

 [A_r: H, 1.0; C, 12.0; O, 16.0]

FB 2 contains ………………… g dm$^{-3}$ H$_2$C$_2$O$_4$.2H$_2$O.

[5]

[Total: 12]

2 You are provided with the following.

FB 4, anhydrous sodium carbonate, Na$_2$CO$_3$

FB 5, solid sodium hydrogen carbonate, NaHCO$_3$

3.0 mol dm$^{-3}$ hydrochloric acid

You are to determine the enthalpy change of reaction, ΔH, for the following reactions.

$\text{Na}_2\text{CO}_3(\text{s}) + 2\text{HCl}(\text{aq}) \rightarrow 2\text{NaCl}(\text{aq}) + \text{CO}_2(\text{g}) + \text{H}_2\text{O}(\text{l})$ \hspace{1cm} ΔH_1

$\text{NaHCO}_3(\text{s}) + \text{HCl}(\text{aq}) \rightarrow \text{NaCl}(\text{aq}) + \text{CO}_2(\text{g}) + \text{H}_2\text{O}(\text{l})$ \hspace{1cm} ΔH_2

(a) Reaction of FB 4, Na$_2$CO$_3$, with an excess of 3.0 mol dm$^{-3}$ hydrochloric acid

Read through the following instructions carefully before starting the experimental work.

- Support the plastic cup in the 250 cm3 beaker provided.
- Use the measuring cylinder to transfer 50 cm3 of 3.0 mol dm$^{-3}$ hydrochloric acid into the plastic cup.
- Weigh the tube containing FB 4, anhydrous sodium carbonate.
- Measure and record the steady temperature of the acid in the beaker.
- Add the contents of the tube to the acid in three separate lots, taking care that the mixture does not overflow.
- Stir and record the highest temperature obtained.
- Reweigh the tube containing residual FB 4.

Record in an appropriate form below all of your weighings and temperature measurements together with the mass, m_1, of FB 4 added and the temperature rise, ΔT_1.

[1]
(b) Calculate the temperature rise per gram of **FB 4**, \(\text{Na}_2\text{CO}_3 \), used in the experiment.

\[
\frac{\Delta T_1}{m_1} = \text{...................................... °C g}^{-1} \quad [2]
\]

(c) Calculate the enthalpy change, \(\Delta H_1 \), for the following reaction.

\[
\text{Na}_2\text{CO}_3(s) + 2\text{HCl}(aq) \rightarrow 2\text{NaCl}(aq) + \text{CO}_2(g) + \text{H}_2\text{O}(l)
\]

\[
\Delta H_1 = -(22.79 \times \frac{\Delta T_1}{m_1}) \text{kJ mol}^{-1}
\]

\[
\Delta H_1 = -\text{..} \text{kJ mol}^{-1}
\]

(d) **Reaction of FB 5, NaHCO\(_3\), with an excess of 3.0 mol dm\(^{-3}\) hydrochloric acid**

50 cm\(^3\) of 3.0 mol dm\(^{-3}\) hydrochloric acid contains 0.15 mol HCl.

Calculate the mass of NaHCO\(_3\) that will react with 0.15 mol HCl.

\([A_1: C, 12.0; H, 1.0; O, 16.0; Na, 23.0]\)

The reaction of NaHCO\(_3\)(s) and HCl(aq) is endothermic.
The expected **fall** in temperature when 1.0 g NaHCO\(_3\)(s) is added to 50 cm\(^3\), an excess, of 3.0 mol dm\(^{-3}\) HCl is approximately 1.5 °C.

(e) The error in reading a −10 °C to +110 °C thermometer is ±0.5 °C.

What is the maximum error when using two temperature measurements to calculate a temperature change?

The maximum error is ± °C. [1]

(f) Determine the maximum percentage error in the calculated temperature change when 1.0 g of NaHCO\(_3\) is added to 50 cm\(^3\) of 3.0 mol dm\(^{-3}\) hydrochloric acid.

The maximum error is ± %. [1]
(g) Use your answer to (d) and the expected temperature change of $-1.5 \, ^\circ\text{C} \, \text{g}^{-1}$ to select a mass of FB 5, NaHCO$_3$, to use in an experiment with 50 cm3 of 3.0 mol dm$^{-3}$ hydrochloric acid. The mass selected should give an appropriate, measurable, temperature fall. **Note:** The hydrochloric acid should be in excess and the percentage error in temperature measurement should be kept to a minimum.

Mass of FB 5 to be used = .. g.

Predicted temperature fall = .. °C.

[1]

(h) Read through the instructions before starting any practical work.

- Empty, rinse, and shake dry the plastic cup used in (a).
- Support the plastic cup in the 250 cm3 beaker provided.
- Use the measuring cylinder to transfer 50 cm3 of 3.0 mol dm$^{-3}$ hydrochloric acid into the plastic cup.
- Weigh the empty tube labelled NaHCO$_3$.
- Add the mass of FB 5 you have selected in (g) to the tube and reweigh.
- Measure and record the steady temperature of the acid in the beaker.
- Add the contents of the tube to the acid in three separate lots, taking care that the mixture does not overflow.
- Stir and record the lowest temperature obtained.
- Reweigh the tube containing residual FB 5.

Record in an appropriate form below all of your weighings and temperature measurements together with the mass, m_2, of FB 5 added and the temperature fall, ΔT_2.

[2]

(i) Calculate the temperature fall per gram of FB 5, NaHCO$_3$, used in the experiment.

$$\frac{\Delta T_2}{m_2} = .. \, ^\circ\text{C} \, \text{g}^{-1}$$

[3]
(j) Calculate the enthalpy change, ΔH_2, for the following reaction.

$$\text{NaHCO}_3(\text{s}) + \text{HCl(}aq\text{)} \rightarrow \text{NaCl(}aq\text{)} + \text{CO}_2(\text{g}) + \text{H}_2\text{O(}l\text{)}$$

$$\Delta H_2 = + (18.06 \times \frac{\Delta T}{m}) \text{ kJ mol}^{-1}$$

$$\Delta H_2 = + \text{ kJ mol}^{-1}$$

(k) It is not possible to measure experimentally the enthalpy change, ΔH_3, for the following reaction as it does not take place in the laboratory.

$$\text{Na}_2\text{CO}_3(\text{s}) + \text{CO}_2(\text{g}) + \text{H}_2\text{O(}l\text{)} \rightarrow 2\text{NaHCO}_3(\text{s})$$

It is possible, however, to calculate a “theoretical” value of ΔH_3 for this reaction from the results of the experiments you have carried out and a Hess cycle.

\[
2\text{HCl(}aq\text{)} + \text{Na}_2\text{CO}_3(\text{s}) + \text{H}_2\text{O(}l\text{)} + \text{CO}_2(\text{g}) \xrightarrow{\Delta H_3} 2\text{NaHCO}_3(\text{s}) + 2\text{HCl(}aq\text{)}
\]

\[
\Delta H_1
\]

\[
2\text{NaCl(}aq\text{)} + 2\text{CO}_2(\text{g}) + 2\text{H}_2\text{O(}l\text{)} \xrightarrow{2\Delta H_2}
\]

Derive an equation to link ΔH_1, ΔH_2, and ΔH_3.

Use your equation and the results from (c) and (j) to calculate a value for ΔH_3.

$$\Delta H_3 = \text{ kJ mol}^{-1}$$

[2]

(l) Suggest a modification to the experimental method in order to reduce the transfer of heat energy to or from the contents of the plastic cup during the experiment.

..

... [1]

[Total: 15]
3 **FB 6 and FB 7** each contain one of the following sodium halides, NaCl, NaBr, NaI.

(a) Place half of the solid FB 6 provided in a test-tube. Half fill the test-tube with distilled water and shake to dissolve the solid. Label the tube FB 6. Do the same with FB 7, labelling the tube FB 7. Keep the remaining solid for (c).

(b) You are to select appropriate reagents from those provided and to perform tests to identify which halide ion is present in FB 6 and which in FB 7. **Retain some of the FB 7 solution for test (d).**

In an appropriate form below record the tests performed and the results of those tests.

From the recorded observations the following halides are identified.

<table>
<thead>
<tr>
<th></th>
<th>FB 6 contains ..</th>
<th>FB 7 contains ..</th>
</tr>
</thead>
</table>

(c) Carry out the following tests. **[Care: unpleasant fumes may be produced]**

<table>
<thead>
<tr>
<th>test</th>
<th>observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB 6</td>
<td>FB 7</td>
</tr>
</tbody>
</table>

- Place the remaining solid in a clean, dry test-tube and add 5 drops of concentrated sulfuric acid (**care: the concentrated acid is very corrosive**), then as soon as you have made your observation,

- half fill the test-tube with distilled water to dissolve the remaining solid and any fumes produced.

- Transfer 1 cm depth of the resulting solution to a test-tube and add a few drops of starch solution.
(d) Carry out the following tests.

<table>
<thead>
<tr>
<th>test</th>
<th>observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place 1 cm depth of the solution of FB 7 prepared in (a) in a test-tube.</td>
<td></td>
</tr>
<tr>
<td>Add 1 cm depth of aqueous bromine, [Care: unpleasant fumes] then,</td>
<td></td>
</tr>
<tr>
<td>add a few drops of starch solution.</td>
<td></td>
</tr>
</tbody>
</table>

(e) Use your observations and knowledge of halogen chemistry to explain the reactions in (c) and identify the chemical behaviour of the concentrated sulfuric acid in the reaction.

..
..
..
..

Use your observations and knowledge of halogen chemistry to explain what happens when the solutions are mixed in (d).

..
..
..
..
..

[1] [3]
(f) **FB 8** and **FB 9** each contain one cation from those listed on page 11.

Carry out the following tests to identify the cation present in each solution.

<table>
<thead>
<tr>
<th>test observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
</tr>
<tr>
<td>To 1 cm depth of solution in a test-tube, add aqueous sodium hydroxide a little at a time then, add an excess of the reagent to give no more than 4 cm depth of solution in the test-tube.</td>
</tr>
<tr>
<td>To 1 cm depth of solution in a test-tube, add aqueous ammonia a little at a time then, add an excess of the reagent to give no more than 4 cm depth of solution in the test-tube.</td>
</tr>
</tbody>
</table>

The cation present in **FB 8** is ..

The cation present in **FB 9** is ..

[3]

[Total: 13]
Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

<table>
<thead>
<tr>
<th>Ion</th>
<th>Reaction with NaOH(aq)</th>
<th>Reaction with NH₃(aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aluminium, Al³⁺(aq)</td>
<td>white ppt. soluble in excess</td>
<td>white ppt. insoluble in excess</td>
</tr>
<tr>
<td>ammonium, NH₄⁺(aq)</td>
<td>no ppt. ammonia produced on heating</td>
<td></td>
</tr>
<tr>
<td>barium, Ba²⁺(aq)</td>
<td>no ppt. (if reagents are pure)</td>
<td>no ppt.</td>
</tr>
<tr>
<td>calcium, Ca²⁺(aq)</td>
<td>white ppt. with high [Ca²⁺(aq)]</td>
<td>no ppt.</td>
</tr>
<tr>
<td>chromium(III), Cr³⁺(aq)</td>
<td>grey-green ppt. soluble in excess giving dark green solution</td>
<td>grey-green ppt. insoluble in excess</td>
</tr>
<tr>
<td>copper(II), Cu²⁺(aq)</td>
<td>pale blue ppt. insoluble in excess</td>
<td>blue ppt. soluble in excess giving dark blue solution</td>
</tr>
<tr>
<td>iron(II), Fe²⁺(aq)</td>
<td>green ppt. turning brown on contact with air insoluble in excess</td>
<td>green ppt. turning brown on contact with air insoluble in excess</td>
</tr>
<tr>
<td>iron(III), Fe³⁺(aq)</td>
<td>red-brown ppt. insoluble in excess</td>
<td>red-brown ppt. insoluble in excess</td>
</tr>
<tr>
<td>lead(II), Pb²⁺(aq)</td>
<td>white ppt. soluble in excess</td>
<td>white ppt. insoluble in excess</td>
</tr>
<tr>
<td>magnesium, Mg²⁺(aq)</td>
<td>white ppt. insoluble in excess</td>
<td>white ppt. insoluble in excess</td>
</tr>
<tr>
<td>manganese(II), Mn²⁺(aq)</td>
<td>off-white ppt. rapidly turning brown on contact with air insoluble in excess</td>
<td>off-white ppt. rapidly turning brown on contact with air insoluble in excess</td>
</tr>
<tr>
<td>zinc, Zn²⁺(aq)</td>
<td>white ppt. soluble in excess</td>
<td>white ppt. soluble in excess</td>
</tr>
</tbody>
</table>

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]
2 Reactions of anions

<table>
<thead>
<tr>
<th>ion</th>
<th>reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbonate, CO$_3^{2-}$</td>
<td>CO$_2$ liberated by dilute acids</td>
</tr>
<tr>
<td>chromate(VI), CrO$_4^{2-}$ (aq)</td>
<td>yellow solution turns orange with H$^+$ (aq); gives yellow ppt. with Ba$^{2+}$ (aq); gives bright yellow ppt. with Pb$^{2+}$ (aq)</td>
</tr>
<tr>
<td>chloride, Cl$^-$ (aq)</td>
<td>gives white ppt. with Ag$^+$ (aq) (soluble in NH$_3$(aq)); gives white ppt. with Pb$^{2+}$ (aq)</td>
</tr>
<tr>
<td>bromide, Br$^-$ (aq)</td>
<td>gives cream ppt. with Ag$^+$ (aq) (partially soluble in NH$_3$(aq)); gives white ppt. with Pb$^{2+}$ (aq)</td>
</tr>
<tr>
<td>iodide, I$^-$ (aq)</td>
<td>gives yellow ppt. with Ag$^+$ (aq) (insoluble in NH$_3$(aq)); gives yellow ppt. with Pb$^{2+}$ (aq)</td>
</tr>
<tr>
<td>nitrate, NO$_3^-$ (aq)</td>
<td>NH$_3$ liberated on heating with OH$^-$ (aq) and Al foil</td>
</tr>
<tr>
<td>nitrite, NO$_2^-$ (aq)</td>
<td>NH$_3$ liberated on heating with OH$^-$ (aq) and Al foil, NO liberated by dilute acids (colourless NO \rightarrow (pale) brown NO$_2$ in air)</td>
</tr>
<tr>
<td>sulfate, SO$_4^{2-}$ (aq)</td>
<td>gives white ppt. with Ba$^{2+}$ (aq) (insoluble in excess dilute strong acid) gives white ppt. with Pb$^{2+}$ (aq)</td>
</tr>
<tr>
<td>sulfite, SO$_3^{2-}$ (aq)</td>
<td>SO$_2$ liberated with dilute acids; gives white ppt. with Ba$^{2+}$ (aq) (soluble in excess dilute strong acid)</td>
</tr>
</tbody>
</table>

3 Tests for gases

<table>
<thead>
<tr>
<th>gas</th>
<th>test and test result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonia, NH$_3$</td>
<td>turns damp red litmus paper blue</td>
</tr>
<tr>
<td>carbon dioxide, CO$_2$</td>
<td>gives a white ppt. with limewater (ppt. dissolves with excess CO$_2$)</td>
</tr>
<tr>
<td>chlorine, Cl$_2$</td>
<td>bleaches damp litmus paper</td>
</tr>
<tr>
<td>hydrogen, H$_2$</td>
<td>“pops” with a lighted splint</td>
</tr>
<tr>
<td>oxygen, O$_2$</td>
<td>relights a glowing splint</td>
</tr>
<tr>
<td>sulfur dioxide, SO$_2$</td>
<td>turns aqueous acidified potassium dichromate(VI) (aq) from orange to green</td>
</tr>
</tbody>
</table>