READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
You are advised to show all working in calculations.
Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 11 and 12.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 11 printed pages and 1 blank page.
1 Read through question 1 before starting any practical work.

You are provided with the following reagents.
- **FA 1** containing 15.68 g dm$^{-3}$ of hydrated ammonium iron(II) sulphate $(\text{NH}_4)_2\text{SO}_4\cdot\text{FeSO}_4\cdot6\text{H}_2\text{O}$
- **FA 2**, 0.015 mol dm$^{-3}$ potassium manganate(VII), KMnO$_4$
- **FA 3** containing 0.025 mol dm$^{-3}$ of a reagent X
- 1.0 mol dm$^{-3}$ sulphuric acid, H_2SO_4

Iron(II) ions, Fe$^{2+}$, are oxidised by acidified manganate(VII) ions.

$$\text{MnO}_4^{-}(\text{aq}) + 8\text{H}^{+}(\text{aq}) + 5\text{e}^{-} \rightarrow \text{Mn}^{2+}(\text{aq}) + 4\text{H}_2\text{O}(l)$$

$$\text{Fe}^{2+}(\text{aq}) \rightarrow \text{Fe}^{3+}(\text{aq}) + \text{e}^{-}$$

Reagent X oxidises Fe$^{2+}$ to Fe$^{3+}$ and is also oxidised by acidified MnO$_4^{-}$.

If varying volumes of **FA 3**, containing reagent X, are added to 25.0 cm3 of **FA 1** in the presence of H_2SO_4 and the mixtures are titrated against **FA 2**, a graph of the results can be drawn as shown.

![Graph showing the titration of FA 1 with FA 3 against FA 2.]

You are to determine experimentally

- **Z**, the exact volume of **FA 3** which reacts with 25.0 cm3 of **FA 1**,
- the mole ratio for the reaction of **FA 1** with reagent X.

(a) **Method**

- Fill a burette with **FA 2**.
- Pipette 25.0 cm3 of **FA 1** into a conical flask.
- Use a measuring cylinder to add approximately 10 cm3 of 1.0 mol dm$^{-3}$ H_2SO_4 to the solution in the flask.
- Titrate the **FA 1** in the flask with **FA 2** until the first permanent pink colour remains in the solution.

The end-point should be found after the addition of approximately 13 cm3 of **FA 2**.

One titration, performed accurately, will be sufficient.

You are reminded that just before the end-point the pink colour from a single drop of **FA 2** spreads through the whole of the solution before disappearing.
Record your titration results in the space below.

(b) Method

- Fill the second burette with FA 3.
- Empty and rinse the conical flask used in part (a).
- Pipette 25.0 cm3 of FA 1 into the conical flask and add 10 cm3 of H$\text{}_2$SO$\text{}_4$ using a measuring cylinder.
- Run 12.00 cm3 of FA 3 from the second burette into the flask.
- Titrate against FA 2 until the first permanent pink colour remains in the solution.

The end-point should be found after the addition of approximately 5 cm3 of FA 2. One titration, performed accurately, will be sufficient.

You are reminded that just before the end-point the pink colour from a single drop of FA 2 spreads through the whole of the solution before disappearing.

Record your titration results in the space below.

(c) The volume of FA 3 added to the flask in (b) reacts with some but not all of the FA 1 present. Calculate the difference between the titres obtained in parts (a) and (b). Use this difference and the volume of FA 3 added to the flask in (b) to calculate the volume of FA 3 that you would expect to react with all of the Fe$^{2+}$ ions in 25.0 cm3 of FA 1.

volume of FA 3 = .. cm3
(d) The value you have obtained in (c) is an approximate value of \(Z \). You are to perform four more titrations, each with a different volume of \(\text{FA 3} \) added to 25.0 cm\(^3\) of \(\text{FA 1} \), in order to plot a graph of the form shown on page 2 and to obtain an exact value for \(Z \).

One titration, performed accurately, will be sufficient for each volume of \(\text{FA 3} \) added.

The volume of \(\text{FA 3} \) you have obtained in (c) will help you to choose suitable volumes of \(\text{FA 3} \) to be added for each titration.

(If you were unable to calculate the volume of \(\text{FA 3} \) in (c) assume that the value lies in the range 19.0 cm\(^3\) to 21.0 cm\(^3\).)

Remember

- you should not use more than 40.0 cm\(^3\) of \(\text{FA 3} \) for any single titration,
- you already have data for titrations with no \(\text{FA 3} \) added and with 12.00 cm\(^3\) added.

Prepare a table in the space below and use it to record the titration results for each volume of \(\text{FA 3} \) added. Include in your table the titre values from parts (a) and (b).

(e) Use the grid on the opposite page to plot a graph of titre against volume of \(\text{FA 3} \) added.

Draw two straight lines through the plotted points to find \(Z \), the volume of \(\text{FA 3} \) that just reacts with the \(\text{Fe}^{2+} \) ions in 25.0 cm\(^3\) of \(\text{FA 1} \).

\(Z \), the volume of \(\text{FA 3} \) read from the graph is cm\(^3\).
(f) Circle on the graph one point where a repeat titration might be appropriate and justify your decision. If you do not think that any titration needs to be repeated, explain why you have come to that conclusion.

..
..
..
...

[1]

Calculations

Show your working and appropriate significant figures in all of your calculations. [2]

(g) Calculate how many moles of Fe2+ ions were pipetted into the flask.
\[A_r: \text{ Fe, 55.8; H, 1.0; N, 14.0; O, 16.0; S, 32.1}\]

\[\text{................. mol of Fe}^{2+} \text{ were pipetted into the flask.}\] [2]

(h) Calculate how many moles of X are present in Z, the volume of FA 3 read from your graph.

\[\text{................. mol of } X \text{ were present in cm}^3 \text{ of FA 3.}\] [1]

(i) Calculate, to 3 significant figures, the number of moles of Fe2+ ions that react with 1 mol of X.

[2]

[Total: 24]
2 The three solutions FA 4, FA 5, and FA 6 each contain one of the following.
 aluminium sulphate, Al₂(SO₄)₃
 ammonium iodide, NH₄I
 zinc nitrate, Zn(NO₃)₂

(a) Use the information on page 12 to select two suitable reagents to use to discover which solution contains iodide ions.

 Record, in the space below, the reagents used and the observations made.

 From these tests, solution FA contains iodide ions. [5]

You are to perform the tests given in the table opposite on each of FA 4, FA 5 and FA 6 to identify, where possible, the cation and anion present in each solution.

Record details of colour changes seen, the formation of any precipitate and the solubility of any such precipitate in an excess of the reagent added.

Where gases are released they should be identified by a test, described in the appropriate place in your table.
You should indicate clearly at what stage in a test a change occurs.

Marks are not given for chemical equations.
No additional tests for ions present should be attempted.
<table>
<thead>
<tr>
<th>test</th>
<th>observations with FA 4</th>
<th>observations with FA 5</th>
<th>observations with FA 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>To 1 cm depth of solution in a test-tube, add aqueous sodium hydroxide drop-by-drop until it is in excess.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>To 1 cm depth of solution in a test-tube, add aqueous ammonia drop-by-drop until it is in excess.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>To 1 cm depth of solution in a test-tube, add aqueous barium chloride, then add dilute hydrochloric acid.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e)</td>
<td>To 1 cm depth of solution in a boiling-tube add 2 cm depth of water and 1 cm depth of aqueous lead(II) nitrate, then if a precipitate has formed, cautiously warm until the solution boils, then cool the tube by standing it in a beaker of cold water.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(f) For each of the solutions **FA 4**, **FA 5**, and **FA 6**, summarise the evidence from the tests performed to identify the cations and anions present. State clearly where a cation or an anion has **not** been specifically identified.

FA 4 contains ..
supporting evidence
..
..
..
..

FA 5 contains ..
supporting evidence
..
..
..
..

FA 6 contains ..
supporting evidence
..
..
..
..

[4]

(g) When testing a solution containing both **NH₄I** and **Zn(NO₃)₂**, suggest why a student should identify the **NH₄⁺** ion before attempting to identify the **NO₃⁻** ion. The Qualitative Analysis Notes on pages 11 and 12 should help you to answer this.

..
..
..
..
..
..
..
..
..

[1]

[Total: 16]
Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

<table>
<thead>
<tr>
<th>ion</th>
<th>reaction with</th>
<th>NaOH(aq)</th>
<th>NH₃(aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aluminium, Al³⁺(aq)</td>
<td>white ppt. soluble in excess</td>
<td></td>
<td>white ppt. insoluble in excess</td>
</tr>
<tr>
<td>ammonium, NH₄⁺(aq)</td>
<td>ammonia produced on heating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>barium, Ba²⁺(aq)</td>
<td>no ppt. (if reagents are pure)</td>
<td>no ppt.</td>
<td></td>
</tr>
<tr>
<td>calcium, Ca²⁺(aq)</td>
<td>white ppt. with high [Ca²⁺(aq)]</td>
<td>no ppt.</td>
<td></td>
</tr>
<tr>
<td>chromium(III), Cr³⁺(aq)</td>
<td>grey-green ppt. soluble in excess giving dark green solution</td>
<td>grey-green ppt. insoluble in excess</td>
<td></td>
</tr>
<tr>
<td>copper(II), Cu²⁺(aq)</td>
<td>pale blue ppt. insoluble in excess</td>
<td>blue ppt. soluble in excess giving dark blue solution</td>
<td></td>
</tr>
<tr>
<td>iron(II), Fe²⁺(aq)</td>
<td>green ppt. insoluble in excess</td>
<td>green ppt. insoluble in excess</td>
<td></td>
</tr>
<tr>
<td>iron(III), Fe³⁺(aq)</td>
<td>red-brown ppt. insoluble in excess</td>
<td>red-brown ppt. insoluble in excess</td>
<td></td>
</tr>
<tr>
<td>lead(II), Pb²⁺(aq)</td>
<td>white ppt. soluble in excess</td>
<td>white ppt. insoluble in excess</td>
<td></td>
</tr>
<tr>
<td>magnesium, Mg²⁺(aq)</td>
<td>white ppt. insoluble in excess</td>
<td>white ppt. insoluble in excess</td>
<td></td>
</tr>
<tr>
<td>manganese(II), Mn²⁺(aq)</td>
<td>off-white ppt. insoluble in excess</td>
<td>off-white ppt. insoluble in excess</td>
<td></td>
</tr>
<tr>
<td>zinc, Zn²⁺(aq)</td>
<td>white ppt. soluble in excess</td>
<td>white ppt. soluble in excess</td>
<td></td>
</tr>
</tbody>
</table>

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]
2 Reactions of anions

<table>
<thead>
<tr>
<th>ion</th>
<th>reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbonate, CO$_3^{2-}$</td>
<td>CO$_2$ liberated by dilute acids</td>
</tr>
<tr>
<td>chromate(VI), CrO$_4^{2-}$ (aq)</td>
<td>yellow solution turns orange with H$^+$ (aq); gives yellow ppt. with Ba$^{2+}$ (aq); gives bright yellow ppt. with Pb$^{2+}$ (aq)</td>
</tr>
<tr>
<td>chloride, Cl$^-$ (aq)</td>
<td>gives white ppt. with Ag$^+$ (aq) (soluble in NH$_3$ (aq)); gives white ppt. with Pb$^{2+}$ (aq)</td>
</tr>
<tr>
<td>bromide, Br$^-$ (aq)</td>
<td>gives pale cream ppt. with Ag$^+$ (aq) (partially soluble in NH$_3$ (aq)); gives white ppt. with Pb$^{2+}$ (aq)</td>
</tr>
<tr>
<td>iodide, I$^-$ (aq)</td>
<td>gives yellow ppt. with Ag$^+$ (aq) (insoluble in NH$_3$ (aq)); gives yellow ppt. with Pb$^{2+}$ (aq)</td>
</tr>
<tr>
<td>nitrate, NO$_3^-$ (aq)</td>
<td>NH$_3$ liberated on heating with OH$^-$ (aq) and Al/foil</td>
</tr>
<tr>
<td>nitrite, NO$_2^-$ (aq)</td>
<td>NH$_3$ liberated on heating with OH$^-$ (aq) and Al/foil; NO liberated by dilute acids (colourless NO \rightarrow (pale) brown NO$_2$ in air)</td>
</tr>
<tr>
<td>sulphate, SO$_4^{2-}$ (aq)</td>
<td>gives white ppt. with Ba$^{2+}$ (aq) or with Pb$^{2+}$ (aq) (insoluble in excess dilute strong acids)</td>
</tr>
<tr>
<td>sulphite, SO$_3^{2-}$ (aq)</td>
<td>SO$_2$ liberated with dilute acids; gives white ppt. with Ba$^{2+}$ (aq) (soluble in excess dilute strong acids)</td>
</tr>
</tbody>
</table>

3 Tests for gases

<table>
<thead>
<tr>
<th>gas</th>
<th>test and test result</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonia, NH$_3$</td>
<td>turns damp red litmus paper blue</td>
</tr>
<tr>
<td>carbon dioxide, CO$_2$</td>
<td>gives a white ppt. with limewater (ppt. dissolves with excess CO$_2$)</td>
</tr>
<tr>
<td>chlorine, Cl$_2$</td>
<td>bleaches damp litmus paper</td>
</tr>
<tr>
<td>hydrogen, H$_2$</td>
<td>'pops' with a lighted splint</td>
</tr>
<tr>
<td>oxygen, O$_2$</td>
<td>relights a glowing splint</td>
</tr>
<tr>
<td>sulphur dioxide, SO$_2$</td>
<td>turns potassium dichromate (VI) (aq) from orange to green</td>
</tr>
</tbody>
</table>