This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.
Biochemistry

1 (a) (i) \[
\begin{array}{c}
\text{O} \\
\text{CH}_3 \\
\text{O}
\end{array}
\] \\
\text{NH}_2 \text{-CH}_2 \text{-C-NH} \text{-CH} \text{-C-NH} \text{-CH}_2 \text{-COOH}
\]
Displayed structure [1]
One peptide linkage shown [1]

(ii) Condensation [1] [4]

(b) (i) Weak intermolecular forces of attraction (1) Van der Waals (1) [2]
(ii) No attraction/affinity for water [1]
Non-polar structure [1] [4]

(c) (i) Both contain the polyamide structure/-CONH- [1]
(ii) Bullet proof vests; body armour; ropes; airbags; kayaks; gloves; skis; run-flat tyres; shields for jet engines; helmets; racquets; clothing any one [1] [2]

2 (a) Diagram: [1]

R end – van der Waals forces [1]
Phosphate end - ionic/polar [1] [3]

(b) (i) van der Waals interactions/dipole –dipole interactions/temporary dipoles/hydrophobic interactions [1]

with the hydrocarbon part of the bilayer [1]

(ii) Disrupt it/distort it/weaken the interactions between the bilayers [1] [3]

(c) \(K^+\) moves into cell, \(Na^+\) moves out of cell [1]
This occurs by active transport [1]
ATP/adenosine triphosphate provides the energy [1]
Integral proteins in the membrane are used [1] [4]
Environmental Chemistry

3 (a) $\text{Cl}_2 + \text{H}_2\text{O} \rightarrow \text{HOC}l + \text{HCl} / \text{Cl}_2 + \text{H}_2\text{O} \Rightarrow \text{ClO}^- + 2\text{H}^+ + \text{Cl}^-$

HOCl is an oxidising agent which kills bacteria/ClO$^-$ is an oxidising agent which kills bacteria

(b) Dissolved chlorine will react with organic pollutants in water

(c) (i) Water softener/removes magnesium or calcium ions from water (as insoluble magnesium or calcium phosphate)

(ii) Phosphate encourages growth of algae and bacteria to form an algal bloom

Algal bloom prevents sunlight from reaching plants lower down in water so they stop photosynthesising and die

Bacteria feeding on dead plants multiply and their respiration uses up all the available dissolved oxygen

(iii) $\text{Al}^{3+} + \text{PO}_4^{3-} \rightarrow \text{AlPO}_4$

Moles of AlPO$_4$ = 4.00/efc from wrong formula or molar ratio

Concentration = 0.004 mol dm$^{-3}$/efc from wrong number of moles

4 (a) (i) Si$_2$A/IO$_9$$^{3-}$

(ii) Cations can be adsorbed onto surface of clay/attraction between the negative clay and the cation

Plants need certain cations such as potassium and by attraction to clay they cannot be washed out of soil easily

(b) (i) Any two from

Hydrogen ions adsorbed onto surface of clay / attraction between hydrogen ion and negative clay

Some cations attached to clay can raise pH because cation is replaced by proton from water

Other cations such as aluminium can lower pH when replaced by hydrogen ion from water

(ii) If H$^+$ is low RCO$_2$H dissociates to produce H$^+$/dissociation equilibrium moves to the right

If [H$^+$] is high RCO$_2$H forms RCO$_2$H$_2^+$

(c) Any three from

Liming involves adding calcium hydroxide or calcium carbonate to soil

OH$^-$ + H$^+$ \rightarrow H$_2$O/CO$_3^{2-}$ + H$^+$ \rightarrow HCO$_3^-$ /more complex equations involving clay

Can reduce nitrogen content of the soil/NH$_4^+$ + OH$^-$ \rightarrow NH$_3$ + H$_2$O

Efficiency of liming reduced by acid surges caused by melting of ice containing acidic water
Phase Equilibria

5 (a) (i) V.P. of A = vapour pressure of A on own x mol fr. of A [1]

OR $P_A = P_A x_A$

(ii) $0.3 \times 48 = 14.4$

$0.7 \times 36 = 25.2$

39.6 k Pa [1]

(iii) Raoult's law obeyed [1]

components are similar/ideal mixture/components not interact [1] [5]

(b) (i) Molecules attract each other OR dipoles align

Stronger intermolecular forces than components [1]

(ii) OR Interact in 1:1 ratio [1] [2]

(c) pure propanone [1]

since this has lowest b.p. OR highest VP

OR is most volatile

(allow discussion of b.p./composition curves) [1]

Then azeotrope or 0.50 composition [1] [3]
6 (a)

- both axes
- solid/liquid slope
- areas
- T.P. (1) values or label
- shape

(b) (i) line drawn at 298K or indicated

value of 60 atm indicated

[Explanation without ref to diagram only scores [1]]

(ii) CO₂ expands from over 60 atm to 1 atm cools

- to below triplet point, explains solid

(c) The solid/liquid line has a positive slope for CO₂ rather than the negative slope of water
Spectroscopy

7 (a) Two absorptions

Asymmetric bend (or diagram) [1]
Asymmetric stretch (or diagram) [1]

(b) (i) 1710 cm\(^{-1}\) – C=O [1]
2260 cm\(^{-1}\) – C≡N [1]
3200 cm\(^{-1}\) – O–H [1]

(ii) NC-CH\(_2\)-CH\(_2\)-CO\(_2\)H [1] [4]

(c) Nmr

+ indication of absorptions (CH\(_2\) ~ 1.3 \(\delta\), -O-H ~ 4.5 \(\delta\)) [2 x 1]

OR Mass spectrometry [1]

+ two examples of likely fragmentations e.g. M-28 (loss of CN) and M-17 (loss of –OH) [2 x 1] [3]

8 (a) Structure II [1]

A peak at 3450 cm\(^{-1}\) is characteristic of -OH would be seen for structure II [1] [2]

(b) (i) Triplet-quartet is characteristic of a CH\(_3\) next to CH\(_2\) group [1]

 Standard 1,3,3,1 and 1,2,1 diagrams [1]

(ii) Singlet (1) at \(\delta\) 2.0 – 3.8 (1) [2]

(iii) Deuterium oxide will exchange protons with -OH group in structure II [1]

 Since deuterium does not absorb in this part of the spectrum the –OH peak would disappear [1] [6]

(c) Structure II will show (M-17)\(^+\) - loss of OH [1]

Structure I will show (M-31)\(^+\) loss of CH\(_3\)O [1]

Structure II will show (M-43)\(^+\) loss of C\(_3\)H\(_7\) any two [2]
Transitions Elements

9 (a) (i) somewhere between 4% and 20% chromium
 (ii) Cr forms its oxide/Cr\textsubscript{2}O\textsubscript{3} on the steel's surface
 which is impermeable to oxygen/hard

(b) (i) \[
\begin{align*}
\text{Cr} &= \frac{33.6}{52} = 0.646 \\
\text{O} &= \frac{20.6}{16} = 1.288 \\
\text{Cl} &= \frac{45.8}{35.5} = 1.290
\end{align*}
\]
 thus A is CrO\textsubscript{2}Cl\textsubscript{2}
 O.N. of chromium = +6
 (ii) orange solution contains Cr\textsubscript{2}O\textsubscript{7}^{2-}
 \[
2\text{CrO}_2\text{Cl}_2 + 3\text{H}_2\text{O} \rightarrow \text{Cr}_2\text{O}_7^{2-} + 6\text{H}^+ + 4\text{Cl}^-
\]
 white ppt is AgCl or Ag+ + Cl- \rightarrow AgCl(s)
 yellow solution contains CrO\textsubscript{4}^{2-}
 \[
\text{Cr}_2\text{O}_7^{2-} + 2\text{OH}^- \rightarrow 2\text{CrO}_4^{2-} + \text{H}_2\text{O}
\]

10 (a) colour dues to absorption of visible light
 d-orbitals are split into two sets at different energies
 photon is absorbed when an electron is promoted to higher orbital

(b) (i) \[
\text{[Fe(SCN)]}^{2+} \text{ is formed - this is red}
\]
 F- is a stronger ligand than SCN- or ligand exchange occurs
 \[
\text{[FeF}_6\text{]}^{3-} \text{ is colourless or energy gap between d-orbitals is large}
\]
 (ii) reduction occurs
 to VO2+ (which is blue)
 \[
\text{SO}_2 + 4\text{H}^+ + 2\text{VO}_3^- \rightarrow \text{SO}_4^{2-} + 2\text{VO}^{2+} + 2\text{H}_2\text{O}
\]
 (further reduction to) V3+ (which is green)
 \[
\text{Sn}^{2+} + 4\text{H}^+ + 2\text{VO}^{2+} \rightarrow \text{Sn}^{4+} + 2\text{V}^{3+} + 2\text{H}_2\text{O}
\]