This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates’ scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.
Grade thresholds for Syllabus 9701 (Chemistry) in the June 2005 examination.

<table>
<thead>
<tr>
<th></th>
<th>maximum mark available</th>
<th>minimum mark required for grade:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component 4</td>
<td>60</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.
1 (a) (i) Ammeter/galvanometer
 Clock/watch/timer (or rheostat)
 (For items above 2 in number, e.g. voltmeter, penalise 1)
(ii) Diagram to show ammeter (allow symbol) in circuit, and
complete circuit with ⊖ terminal of power pack connected to LH electrode
(iii) Volume/amount of hydrogen/gas
 Time
 Current/amps/ammeter reading
 (ignore extra measurements)

Part (a): [7]

(b) (i) \(F = L \times e \) [1]
(ii) \(L = \frac{9.63 \times 10^4}{1.6 \times 10^{-19}} = 6.02 \times 10^{23} \) (must show working) [1]
 Allow 6.0 but not 6 or 6.01

Part (b): [2]
Total: [9]

2 (a) The power/index/exponent to which a concentration term is raised in
 a rate equation
 or \(a \) in rate = \(k[A]^a \) (k is needed – or can use rate \(\alpha[A]^a \)) [1]

Part (a): [1]

(b) (i) 1st order w.r.t. propanone [1]
 Zero order w.r.t. \(H^+ \) ions [1]
 1st order w.r.t. CN\(^-\) ions [1]
(ii) Rate = \(k \) [propanone][CN\(^-\)] (e.c.f. from (i)) [1]
(iii) Mechanism B (or A – see grid below), with the first (or second – see grid below) step being the slow step,
 (since \(H^+ \) does not appear in rate equation) it must be involved after the slow step or \([H^+] \) is not involved in slow step [1]

Grid for e.c.f. in first mark of (iii)

<table>
<thead>
<tr>
<th>Deductions in (i) or (ii)</th>
<th>E.C.F. deductions in (iii)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Propanone] [CN] ([H^+])</td>
<td>Mechanism</td>
</tr>
<tr>
<td>1 1 0</td>
<td>B</td>
</tr>
<tr>
<td>1 0 1</td>
<td>A</td>
</tr>
<tr>
<td>1 1 1</td>
<td>A or B</td>
</tr>
<tr>
<td>Any other</td>
<td>No e.c.f. mark can be awarded</td>
</tr>
</tbody>
</table>

Part (b): [6]
Total: [7]
(a) (i) It is an endothermic reaction, or taking in heat [1]
It has a high activation energy/\(E_a \) [1]
(ii) MgCO_3 will decompose at a lower temperature/needs less energy [1]
Mg\(^{2+}\) is a smaller (ion) than Ca\(^{2+}\) or Mg\(^{2+}\) has high charge density [1]
So polarises/distorts the anion CO\(_3^{2-}\) ion more easily [or LE(MgO) > LE(CaO)] [1]

Part (a): [5]

(b) \[\Delta H = 82 - 178 = -96 \text{ (kJ mol}^{-1}\text{)} \] [1]

Part (b): [1]

(c) \[\text{[CaMg(CO}_3\text{)}_2 \rightarrow \text{CaO + MgO + 2CO}_2] \]
\[M_r(\text{CaMg(CO}_3\text{)}_2) = 40.1 + 24.3 + 24 + 96 = 184.4 \] [1]
\[M_r(2\text{CO}_2) = 2 \times 44 = 88 \]
\[\therefore \% \text{ loss in mass} = 100 \times \frac{88}{184.4} = 47.7\% \] (e.c.f. in 184.4) [1]
Allow 48%. Also allow 48.8% if \(M_r = 184 \)

Part (c): [2]

Total: [8]
4 (a) (i) \(1s^2 2s^2 2p^6 3s^2 3p^6 4s^2\) or [Ar] 3d\(^6\)4s\(^2\) \[1\]

(ii) Coloured compounds/ions/solutions/ppts; paramagnetic; variable oxidation state/valency/more than one ion; dense metals; high melting point metals; are catalysts; form complexes \(\text{ANY 2} [1] + [1]\)

Part (a): [3]

(b) (i) \(\text{MnO}_4^- + 8H^+ + 5\text{Fe}^{2+} \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O} + 5\text{Fe}^{3+}\) \[1\]

\(E^o = 1.52 - 0.77 = 0.75\text{V} \) (allow e.c.f. 0.90V for \(\text{MnO}_2\)) \[1\]

(ii) \(\text{MnO}_4^- \) is purple/highly coloured \[1\]

End point is first (permanent) pink colour or colourless-to-pink (Allow yellow-to-pink but not purple-to-pink) \[1\]

Part (b): [4]

(c) Water molecules are ligands, in that they coordinate/form dative bonds (to the Fe ion) with their (lone) pairs of electrons or lone pairs are donated. \[1\]

A complex ion is an ion/Fe\(^{3+}\) surrounded by/joined to ligands or \([\text{Fe(H}_2\text{O})_6]^{3+}\) \[1\]

Part (c): [2]

(d) (i) Haemoglobin transports oxygen in the blood or from lungs (to tissues) \[1\]

(ii) CO forms stronger bonds to Hb/Fe\(^{2+}\) than does \(\text{O}_2\) or CO has higher affinity or bonds irreversibly or forms more stable complex \[1\]

Part (d): [2]

(e) Reagent: \(\text{I}_2 + \text{OH}^-\) \[1\]

Observations - ethanol: yellow ppt./antiseptic smell; methanol: no change \[1\]

Part (e): [2]

Total: [13]
Part (a): [1]

(b) (i) The more chlorine atoms in the molecule, the stronger the acid, due to the electron-withdrawing (inductive) effect of Cl...

either...stabilising the anion, or spreading (-) charge more,

or...weakening the O-H bond in the acid, or...increasing ionisation,

or...facilitates H⁺ donation

or...causing the equilibrium RCO₂H ⇌ RCO₂⁻ + H⁺ to lie further to the right.

Mark is conditional on reference to the effect of presence of chlorine.

(ii) \[[H^+] = \sqrt{(0.1 \times 1.4 \times 10^{-3})} = 0.0118 \text{ (mol dm}^{-3}) \] allow 0.012

∴ \[\text{pH} = -\log_{10}(0.0118) = 1.93 \] Allow 1.9 or 1.92 e.c.f.

(iii) \[\text{p}K_a = -\log_{10}(5.5 \times 10^{-2}) = 1.26 \] Allow 1.3

Part (b): [6]

(c) (i) \(\text{Cl}_2(\text{aq}) \text{ AlCl}_3 \) or UV negates

(ii) Electrophilic substitution or addition-elimination

Nucleophilic substitution or electrophilic substitution on OH group

If neither mark is awarded, could give “salvage” mark for substitution x2

(iii) Either: add \(\text{Br}_2(\text{aq}) \) phenol decolourises it, or gives a white ppt.
or: add \(\text{FeCl}_3(\text{aq}) \) phenol give a purple colour

or: add \(\text{NaOH}(\text{aq}) \) phenol dissolves

or: add UI solution phenol goes yellow/orange (A stays green)
or: add “diazonium” to solution in OH

phenol gives orange/red colour

(in each case, A give no reaction)
or: add \(\text{Cr}_2\text{O}_7^{2-}/\text{H}^+/\text{warm} \) A changes colour from orange to green

or: add \(\text{MnO}_4^-/\text{H}^+/\text{warm} \) A changes from purple to colourless

or: add \(\text{PCl}_5/\text{POCl}_3/\text{PCl}_3/\text{SOCl}_2 \) A gives fumes

or: add \(\text{CH}_3\text{CO}_2\text{H} + \text{conc. H}_2\text{SO}_4 \) A gives fruity smell

(in each case, no change with phenol)

Test + reagents [1] Both observations [1]

Part (c): [5]

Total: [12]
6 (a) (i) Electrophilic substitution or nitration [1]

(ii) $\text{HNO}_3 + \text{H}_2\text{SO}_4$ [1]
(both) conc., and at $50^\circ\text{C} \leq T \leq 60^\circ\text{C}$ [1]

(iii) NO_2^+ [1]

\begin{center}
\begin{tikzpicture}
\node at (0,0) {\text{H}};
\node at (1,0) {\text{NO}_2};
\node at (2,0) {\text{etc.}};
\node at (3,0) {\text{or}};
\node at (4,0) {\text{H}};
\node at (5,0) {\text{NO}_2};
\node at (6,0) {\text{etc.}};
\node at (7,0) {\text{or}};
\node at (8,0) {\text{H}};
\end{tikzpicture}
\end{center}

Any \oplus on NO$_2$ or H negates [1]

H^+ [1]

Part (a): [6]

(b) (i) Reduction [1]

(ii) $\text{Sn/Fe/Zn/SnCl}_2 + \text{HCl}/\text{H}^+/{\text{H}}_2\text{SO}_4$ (but not conc. H$_2$SO$_4$) [1]
\textbf{or} H$_2$ + Ni/Pt (\textbf{not} LiAl/H$_4$) [1]

Part (b): [2]

(c) $\text{PCl}_3/\text{PCl}_5/\text{SOCl}_2/\text{POCl}_3$ (+ heat) aq negates [1]

Part (c): [1]

(d) (i) An amide, \textbf{not} peptide [1]

(ii) Heat with H$_3$O$^+$ \textbf{or} heat with OH$^-$ (aq) [1]

\textbf{Or} warm (\textbf{not} heat/reflux) with aqueous amidase/peptidase/protease \textbf{not}
enzyme/trypsin/chymotrysin/pepsin/papain etc. [1]

Part (d): [2]

Total: [11]