<table>
<thead>
<tr>
<th>MARK SCHEME</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMUM MARK : 60</td>
</tr>
<tr>
<td>SYLLABUS/COMPONENT : 9701 /4</td>
</tr>
<tr>
<td>CHEMISTRY (STRUCTURED QUESTIONS (A2 CORE))</td>
</tr>
</tbody>
</table>
1. (a) \[K_w = [H^+][OH^-] \quad \text{or} \quad [H_3O^+][OH^-] \] \[\quad \text{[1]} \]

(b) \[[H^+] = K_w[OH^-] = 1 \times 10^{-14}/0.2 \quad (= \quad 5 \times 10^{-14} \text{ mol dm}^{-3}) \] \[\quad \text{[1]} \]

\[\therefore \quad \text{pH} = 13.3 \] \[\quad \text{[1]} \]

(c) \(\text{NH}_3 \) is a weak base \ or \ incompletely ionised \(\text{or} \) \(\text{NaOH} \) is strong base \ [or an equation showing the equilibrium over to the \(\text{NH}_3 + \text{H}_2\text{O} \) side] \[\quad \text{[1]} \]

(d) \[\text{end point} \quad \text{at} \ 40\pm4 \ 	ext{cm}^3 \] \[\text{[i.e. vertical line, or dotted line]} \]

\[\text{shape of curve} \] \[\text{[i.e. flatish-steep down-flatish]} \]

\[\text{start at} \ 1\ 1.3 \ 	ext{cm}^3 \] \[\text{[can be read off position on axis]} \]

2. (e) \text{methyl orange} \[\quad \text{[1]} \]

(f) \[\text{NH}_3 + H^+ \quad \rightarrow \quad \text{NH}_4^+ \] \[\text{[or NH}_3 + \text{HCl or H}_2\text{SO}_4 \text{ etc]}} \[\quad \text{[1]} \]

\[\text{NH}_4^+ + \text{OH}^- \rightarrow \text{NH}_3 + \text{H}_2\text{O} \] \[\text{[or NH}_3\text{Cl + NaOH etc]} \[\quad \text{[1]} \]

\[\text{At least one of the above equations should be shown. Allow a verbal equivalent for the other equation. Correct verbal equivalents for both equations are still worth [1] mark only. Any incorrect equation negates the mark for a correct one, but ignore "neutral" equations like NH}_3\text{Cl} \rightarrow \text{NH}_4^+ + \text{Cl}^- \]

3. total: 10
2. (a) mix (a solution of) 4-nitrophenyl ethanolate with (a solution of) NaOH
[do NOT allow titration with NaOH] [1]

either [ester] or volume of ester solution is known/fixed/stated [1]

place in coloorimeter (fitted with a suitable filter) (or spectrophotometer) [1]

time the reaction / the appearance of yellow colour / the formation of product [1]

measure the increase in absorbance over time or take time for a fixed
absorbance/colour to occur [1]

[allow take out samples at known times and titrate with standard acid for the last two marks]

5. max 4

(b) (i) from graph (see next page) [N.B. the graph on the question paper has not
been reproduced correctly - the shapes of the curves are steeper at the start than
the original. Allowance has been made for this in the rate ranges quoted below]

rate (A) = 0.001/18 – 0.001/26 = 3.8 – 5.5 x 10⁻³ mol dm⁻³ min⁻¹
[or 6.3 – 9.0 x 10⁻⁷ mol dm⁻³ sec⁻¹] [1]

rate (B) = 0.001/7 – 0.001/12 = 8.3 – 14.3 x 10⁻⁵ mol dm⁻³ min⁻¹
[or 1.38 – 2.4 x 10⁻⁷ mol dm⁻³ sec⁻¹] [1]

correct units for either rate w/c [1]

(ii) order with respect to [OH⁻] = 1 w/c [1]

(iii) order with respect to [ester] = 1 w/c [1]

(iv) constant (successive) half lives
(look for evidence of construction lines on graph) [1]

(v) \[
\text{rate} = k[\text{OH}^-][\text{ester}] \quad \text{[allow e.c.f. expression must fit in with}
\text{answers for (ii) and (iii)]} \quad [1]
\]

(vi) \[
k = \frac{\text{rate}}{[\text{OH}^-][\text{ester}]} = 4 \times 10^{-5}/(0.2 \times 1 \times 10^{-3})
= 0.2 \pm 0.05 \text{ mol}^{-1} \text{ dm}^3 \text{ min}^{-1} \quad [1] \quad \text{[or 0.0033 \text{ mol}^{-1} \text{ dm}^3 \text{ sec}^{-1} \quad [1] \quad \text{units}]

\]

[allow ecf from part (i) for value of the rate constant and part (v) for rate
equation. Units mark is w/c]

total: 13
2. Graph for part (b)

3 (a) \(\text{Ca(NO}_3\text{)}_2 \rightarrow \text{CaO} + 2\text{NO}_2 + \frac{1}{2}\text{O}_2 \) \([\text{or doubled}]\) [1]

(b) stabilities **increase** down the group \([\text{or comparison of two Gp II nitrates}]\) [1]

because as the ions \([\text{NOT atoms}]\) get bigger/have more shells/have smaller charge density \(\text{u/c} \) [1]

there is **less polarisation** of the nitrate ion/\(\text{NO}_3^-\)/anion \(\text{u/c} \) [1]

3 (c) (i) \(\text{MNO}_1 \rightarrow \text{MNO}_2 + \frac{1}{2}\text{O}_2 \) \([\text{or doubled, or specific Gp I nitrate}]\) [1]

(ii) 100g loses 10.85g of oxygen, this is \(10.85/16 = 0.678\) moles of \(\text{O}_2\) or \(0.339\) moles of \(\text{O}_2\) per 100g \(\text{[1]}\)

\[\therefore 0.678 \text{ mol of MNO}_1 \text{ has a mass of 100g} \]

\[\therefore 1.0 \text{ mol of MNO}_3 \text{ has a mass of } 100/0.678 = 147.5 \text{ g} \]

since \(\text{NO}_3 = 62, \text{M} = 147.5 - 62 = 85.3 \) \([85 - 85.5]\) [1]

total: 7
4 (a) \[\text{[}3s^2 3p^6 \text{]} 3d^5 \] [1]

(b) (i) \(E^0 \) values: Cl\(_2\)/Cl\(^-\) 1.36(V) \(\text{Br}_2/\text{Br}^- \) 1.07(V) \(\text{I}_2/\text{I}^- \) 0.54(V) [1]

(\(E^0 \) values could be read from the answers in (c)]

(Therefore) the halogens are less oxidising from Cl to I u/c [1]

(ii) \(E^0 \) values: \(\text{Cr}^{3+}/\text{Cr}^{2+} \) -0.41V \(\text{Fe}^{3+}/\text{Fe}^{2+} \) 0.77V \(\text{Co}^{3+}/\text{Co}^{2+} \) 1.82V [1]

(\(E^0 \) values could be read from the answers in (c). Allow -0.74 for \(\text{Cr}^{3+} \) and -0.04 for \(\text{Fe}^{3+} \))

(Therefore) the 3+ ions become more oxidising from \(\text{Cr}^{3+} \) to \(\text{Co}^{3+} \) u/c [1] 4 max 3

(c) (i) no reaction [1]

(ii) \[2\text{Co}^{3+} + 2\text{Br}^- \rightarrow 2\text{Co}^{2+} + \text{Br}_2 \] \(E^0 = 1.82 - 1.07 = 0.75 \text{V} \) [1]

(iii) \[2\text{Cr}^{2+} + \text{I}_2 \rightarrow 2\text{Cr}^{3+} + 2\text{I}^- \] \(E^0 = 0.54 - (-0.41) = 0.95 \text{V} \) [1] 5 max 4 total: 8

5 (a) amide [NOT peptide] [1]

phenol [NOT hydroxy or alcohol]
[ignore, i.e. do not allow, benzene ring] [1] 2

(b) (i) \[
\begin{array}{c}
\text{Br} \\
\text{CH}_3\text{CONH-}\\
\text{Br} \\
\text{OH}
\end{array}
\] (or isomers, ≥ 2 bromines) [1]

(ii) \[
\begin{array}{c}
\text{CH}_3\text{CONH} \\
\text{Br}
\end{array}
\] [or Na salt - must include charges] [1]

(iii) \[
\begin{array}{c}
\text{CH}_3\text{CO}_2^- \\
\text{OH}
\end{array}
\] [or Na salt - must include charges] [1] 3

(c) (i) \(X = \text{CH}_3\text{COCl} \) or \(\text{(CH}_3\text{CO})_2\text{O} \) [or names, NOT ester] [1]

(ii) \(\text{PCl}_3 \) or \(\text{PCl}_2 \) or \(\text{SOCl}_2 \) [or names] [1]

[if the anhydride is used, allow \(\text{P}_2\text{O}_5, \text{AlPO}_4, \text{CH}_2=\text{C}=\text{O}, \text{PCl}_3 \) then plus \(\text{CH}_3\text{CO}_2\text{Na} \) or any other valid method of obtaining anhydrides from acids]

[if \(X = \text{ester} \) then allow ecf for \(\text{CH}_3\text{OH} + \text{conc H}_2\text{SO}_4 \)]

2 total: 7
6 (a) (i) Al/AlCl₃/Fe/FeCl₃/H₂

\[(aq) \text{ or light negates this mark} \] [1]

(ii) light/ultraviolet light or heat

\[(aq) \text{ or water negates this mark} \] [1]

(b) (i) A does not react, because the Cl–ring bond is strong/short or Cl is more closely bonded or Cl electrons delocalised into the ring [1]

(ii) \[\text{CH₃Cl} \quad \text{CH₃OH} \]

\[
\text{+ OH}^- \text{ (or NaOH)} \quad \text{+ Cl}^- \text{ (no cef)} [1]
\]

\[
\text{or NaCl}
\]

total: 4

7 (a) \[\text{Y = } \text{NO}_2 \] [1]

reagents for I: conc. HNO₃ + H₂SO₄

\[(aq) \text{ negates} \] [1]

[e.g. if Y = chlorobenzene, allow Cl₂ + Fe etc]

reagents for II: tin/Sn or iron/Fe [NOT Zn] + (conc.)HCl

or LiAlH₄ [NOT NaBH₄] or H₂ + Ni [NOT Pt] [1]

[e.g. if Y = chlorobenzene, allow NaBH₄ [NOT NH₄]]

conditions for I: \[35°C < T < 60°C \]

\[\text{cond. on suitable reagent} \] [1]

[e.g. if Y = chlorobenzene, allow NaBH₄]
(b) (i) \(\text{C}_6\text{H}_5\text{NH}_2 + \text{H}^+ / \text{HCl} / \text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_5\text{NH}_3^+ [\text{+ Cl}^- / \text{OH}^-] \) [1]

\(\text{product must show ionic } \text{N}^- \)

(ii) less basic than \(\text{NH}_3 \) [1]

(iii) lone pair (on N) is delocalised over the ring [1]

\(\text{this mark may be obtained from a diagram - e.g. double dot on N + curly arrow} \)

(c) (i) \(\text{HNO}_2 \text{ or nitrous (nitric(III)) acid or NaNO}_2 + \text{HCl} \) [1]

\(0^\circ \text{C} < T < 10^\circ \text{C} \) [1]

(ii) \(\text{NaOH (aq) or dilute or in solution (or in words) [NOT NH}_3\text{(aq)]} \) [1]

(iii) \[\text{[CH}_3\text{ and OH have to be adjacent, but allow any orientation of N=N w.r.t. OH]} \] [1]

\(\text{total: 11} \)

No circle in benzene ring: deduct [1] for the whole paper.